A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time. | LitMetric

Harnessing fruit-vegetable waste (FVW) as a resource to produce hydrogen via dark fermentation (DF) embraces the circular economy concept. However, there is still a need to upgrade continuous FVW-DF bioprocessing to enhance hydrogen production rates (HPR). This study aims to investigate the influence of the hydraulic retention time (HRT) on the DF of FVW by mixed culture. A stirred tank reactor under continuous mesophilic conditions was operated for 47 days with HRT stepwise reductions from 24 to 6 h, leading to organic loading rates between 47 and 188 g volatile solids (VS)/L-d. The optimum HRT of 9 h resulted in an unprecedented HPR from FVW of 11.8 NL/L-d, with a hydrogen yield of 95.6 NmL/g VS fed. Based on an overarching inspection of hydrogen production in conjunction with organic acids and carbohydrates analyses, it was hypothesized that the high FVW-to-biohydrogen conversion rate achieved was powered by lactate metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128716DOI Listing

Publication Analysis

Top Keywords

hydraulic retention
8
retention time
8
hydrogen production
8
hydrogen
5
unlocking high-rate
4
high-rate continuous
4
continuous performance
4
performance fermentative
4
fermentative hydrogen
4
hydrogen bioproduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!