Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Harnessing fruit-vegetable waste (FVW) as a resource to produce hydrogen via dark fermentation (DF) embraces the circular economy concept. However, there is still a need to upgrade continuous FVW-DF bioprocessing to enhance hydrogen production rates (HPR). This study aims to investigate the influence of the hydraulic retention time (HRT) on the DF of FVW by mixed culture. A stirred tank reactor under continuous mesophilic conditions was operated for 47 days with HRT stepwise reductions from 24 to 6 h, leading to organic loading rates between 47 and 188 g volatile solids (VS)/L-d. The optimum HRT of 9 h resulted in an unprecedented HPR from FVW of 11.8 NL/L-d, with a hydrogen yield of 95.6 NmL/g VS fed. Based on an overarching inspection of hydrogen production in conjunction with organic acids and carbohydrates analyses, it was hypothesized that the high FVW-to-biohydrogen conversion rate achieved was powered by lactate metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.128716 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!