This is the first report on identification of the most suitable reference genes for RT-qPCR quantification of miRNA and mRNA in tobacco response to the prevalent recombinant potato virus Y (PVY) strains PVY, PVY and the newly identified PVY-NTN. Of 10 tested genes, the expression levels of neIF5C, nU2af and nPP2A were the most stable in samples taken from non-inoculated, mock-inoculated, and infected plants at three days post-inoculation (dpi) and 14 dpi. While the homologues of eIF5 were most stably expressed in tobacco in this study and in potato in our previous study (Yin et al., 2021) following inoculation with the same three PVY strains, the homologues of other two genes PP2A and U2af were stably expressed only in tobacco but unstable in potato. The tobacco homologue of PP2A, which was the most stably expressed one in tobacco interaction with PVY, PVY and PVY-NTN strains in this study, was the least stable one in tobacco interaction with the non-recombinant PVY strain in a previous study (Baek et al., 2017). This study provides evidence on the influence of host species on expression of housekeeping genes and points out virus strain as a new factor influencing expression stability of reference gene. Caution should be taken when choosing reference genes in gene expression study in Solanaceae hosts response to different PVY strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2023.147261DOI Listing

Publication Analysis

Top Keywords

reference genes
12
pvy pvy
12
pvy strains
12
stably expressed
12
expressed tobacco
12
pvy
10
mirna mrna
8
pvy pvy-ntn
8
pvy-ntn strains
8
previous study
8

Similar Publications

Technologies for studying phase-separated biomolecular condensates.

Adv Biotechnol (Singap)

March 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.

Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes.

View Article and Find Full Text PDF

Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.

Adv Biotechnol (Singap)

April 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.

View Article and Find Full Text PDF

Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .

View Article and Find Full Text PDF

Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.

View Article and Find Full Text PDF

Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020.

Virus Evol

December 2024

ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.

Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!