Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atmospheric greenhouse gas (GHG) emissions from seagrass meadows that determine the ecosystem atmospheric cooling effect have rarely been quantified. This study measured the simultaneous fluxes direct to the atmosphere of three GHGs (CO, CH and NO) within a Halophila beccarii seagrass meadow and an adjacent unvegetated bare intertidal flat, and their relationships to seagrass abundance and relevant soil parameters. The results showed that seasonal variation in seagrass abundance was strongly linked with the CO exchange rate. The CH and NO fluxes were similarly low at both sites and comparable between winter and summer. The global warming potential of CH and NO reduced the ecosystem CO uptake by only 5 % at the seagrass site. The results indicated that the H. beccarii meadow had a stronger atmospheric cooling effect than the bare flat and that the seagrass-mediated CO flux in this oligotrophic seagrass meadow primarily determined the atmospheric cooling effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.114676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!