Heavy metals in soils can migrate into the food chain and affect human health. In particular, they can be released into water supplies through interactions between soils and water. It is therefore important to study the concentrations of heavy metals in soils surrounding sources of drinking water, but there is a lack of research in this area. A total of 7656 topsoil samples surrounding the core water source of Danjiangkou Reservoir in China were collected and analyzed for As, Hg and Pb. Moran's I index and semivariograms were used to analyze the spatial correlation and variation of these heavy metals. The potential ecological risk index was used to evaluate heavy metal pollution. Fifteen natural and human factors were selected to explore the sources of heavy metal pollution using the GeoDetector model. The positive matrix factorization (PMF) model verified the reasonableness of the main factors identified by the GeoDetector model and further quantified two main sources of soil heavy metals. As, Hg and Pb were enriched to varying degrees in the soils. The potential ecological risk of Hg in soils was the most serious, with 24.67% of the area at high or very high risk. As and Pb both had a low potential ecological risk. The results of GeoDetector model and PMF model showed that the contributions of factor 1 (fertilizer application and automobile exhaust emissions) and factor 2(industrial waste) of soil heavy metal pollution were 49.8% and 50.2%, respectively. At last, the zoning control strategies were proposed in order to provide scientific reference for the management of soil heavy metal pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.114610 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
RSC Adv
January 2025
Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950.
The Mediterranean Sea is an intercontinental marine environment renowned for its biodiversity and ecological significance. However, it is also one of the most polluted seas globally with significant levels of microplastics and heavy metals among other emerging contaminants. In Lebanon, inadequate waste management infrastructure and unregulated industrial discharges have exacerbated water quality deterioration by introducing these complex contaminants into surface and seawater.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
The fused heterocycle 1-(imidazo[5,1-a]isoquinolin-3-yl)naphthalen-2-ol (LH) has been synthesized and characterized by spectroscopic methods. Probe LH upon irradiation with λ = 336 nm exhibited strong fluorescence with λ = 437 nm in MeOH/HEPES buffer (5 mM, pH = 7.4, 2:8, v/v).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides. While MXenes have great potential for applications in analytical chemistry, most of the studies in this field are focused on TiCT, the most popular MXene material. For example, several studies employed TiCT as an adsorbent for the trace detection of toxic analytes, but there is limited knowledge on the utility of other MXene materials for this application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!