Zearalenone (ZEN) is one of the most common mycotoxins in maize, wheat, barley, sorghum, rye and other grains. ZEN contamination in feed is an international health issue due to its estrogenicity by competitively binding to estrogen receptors. Enzymatic detoxification of ZEN is superior to physical and chemical methods in terms of safety, environmental impact and preserving nutritional value and palatability, but is hampered by both the currently limited repertoire of detoxifying enzymes and the lack of knowledge about their structure-function relationships. In this study, a ZEN lacton hydrolase candidate (ZHD11C) was identified from thermo-tolerant Fonsecaea multimorphosa CBS 102226, and characterized to be more thermostable than these reported homologues. An intriguing feature of ZHD11C is that the N-terminal hydrophobicity affects its thermal stability and causes conformational change of a domain far from the N-terminal. This finding was successfully applied to enhance the thermostability of the most active ZEN lacton hydrolase ZHD518 through rationally tailoring its N-terminal hydrophobicity. Our results not only provide more insights into the structure-function relationships of ZEN lacton hydrolases, but generate better candidate for bio-decontamination of zearalenone in feed industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2023.110195DOI Listing

Publication Analysis

Top Keywords

n-terminal hydrophobicity
12
lacton hydrolase
12
zen lacton
12
structure-function relationships
8
zen
6
n-terminal
4
hydrophobicity modulates
4
modulates distal
4
distal structural
4
structural domain
4

Similar Publications

The sequence-structure-function relationship of intrinsic ERα disorder.

Nature

January 2025

Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.

View Article and Find Full Text PDF

Macrocyclic peptides containing a thiazole heterocycle exhibit fascinating properties in natural products and future therapeutics. We report a biocompatible macrocyclisation approach facilitated by an N-terminal cysteine and C-terminal nitriles. The use of various chiral α-amino nitriles enables the incorporation of diverse hydrophobic side chains adjacent to the thiazole motif.

View Article and Find Full Text PDF

Dual Inhibitors of SARS-CoV-2 3CL Protease and Human Cathepsin L Containing Glutamine Isosteres Are Anti-CoV-2 Agents.

J Am Chem Soc

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.

SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

January 2025

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!