Chemically and hydrolytically stable metal-organic frameworks (MOFs) have shown great potential for many water-adsorption-related applications. However, MOFs with large pores that show high water-uptake capacity and high hydrolytic and mechanical cycle stability are rare. Through a deliberate adjustment of the linker of a typical zirconium-based MOF (Zr-MOF) (), a new isomer of with blocked -pores, but large mesopores was successfully synthesized. This new isomer, , exhibits excellent water stability, one of the highest water vapor uptake capacities, and excellent cycle stability, making it a promising candidate for water-vapor-sorption-based applications such as water-adsorption-driven heat transfer. We find that the high water-cycling stability of is traceable to its blocking -pore that hinders the hydrolysis of node-coordinating formate in the -pore area and thereby prevents the introduction of node aqua and terminal hydroxo ligands. With the absence of these ligands and their ability to hydrogen-bond to channel-located water molecules, the strength of guest (water)/host (MOF) interactions is diminished and the absolute magnitude of the capillary force exerted by water during its evacuation from MOF channels is attenuated. The attenuation leaves the MOF capable of resisting pore collapse, capacity loss, and crystallinity loss during repetitive evaporative removal (and re-introduction) of water from pores.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c12362DOI Listing

Publication Analysis

Top Keywords

cycle stability
12
blocking -pore
8
stability
5
water
5
isomer nu-1000
4
nu-1000 blocking
4
-pore exhibits
4
high
4
exhibits high
4
high water-vapor
4

Similar Publications

Tetrahedral Lithium Stuffing in Disordered Rocksalt Cathodes for High-Power-Density and Energy-Density Batteries.

J Am Chem Soc

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Li-rich cation-disordered rocksalt (DRX) materials introduce new paradigms in the design of high-capacity Li-ion battery cathode materials. However, DRX materials show strikingly sluggish kinetics due to random Li percolation with poor rate performance. Here, we demonstrate that Li stuffing into the tetrahedral sites of the Mn-based rocksalt skeleton injects a novel tetrahedron-octahedron-tetrahedron diffusion path, which acts as a low-energy-barrier hub to facilitate high-speed Li transport.

View Article and Find Full Text PDF

TiN Boosting the Oxygen Reduction Performance of Fe-N-C through the Relay-Catalyzing Mechanism for Metal-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.

Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.

View Article and Find Full Text PDF

Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.

View Article and Find Full Text PDF

Multifunctional Polar Polymer Boosting PEO Electrolytes toward High Room Temperature Ionic Conductivity, High-Voltage Stability, and Excellent Elongation.

ACS Appl Mater Interfaces

January 2025

International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.

Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.

View Article and Find Full Text PDF

Gastric ulcer is a common disorder of the digestive system. The combination of turmeric and honey is known to treat stomach ulcers. However, curcumin, an active component in turmeric, has limitations, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!