Unlabelled: Treatment of malignant gliomas is an extremely difficult objective associated with difficult choice of correct strategy. Photodynamic therapy is still not the treatment standard in these patients although this approach significantly improves treatment outcomes in surgery of gliomas.

Objective: To demonstrate the possibilities of chlorin e6-mediated photodynamic therapy for malignant glial tumors.

Material And Methods: There were 161 patients with malignant supratentorial glial tumors who were treated at the Polenov Russian Neurosurgery Institute between 2009 and 2016. Eighty patients comprised the main group (photodynamic therapy), 81 ones - control group (without photodynamic therapy).

Results: Photodynamic therapy in complex treatment of malignant brain gliomas significantly increases overall survival in patients with Grade III gliomas up to 39.1±5.5 months (control group - 22.8±3.3 months) and Grade IV gliomas up to 20.7±4.7 months (control group - 13.5±2.3 months) (=0.0002). This method also increases relapse-free period in patients with Grade III gliomas up to 21.7±3.4 months (control group - 15.8±3.1 months) (=0.0002) and Grade IV gliomas up to 11.1±2.1 months (control group - 8.0±2.3 months) (=0.0001).

Download full-text PDF

Source
http://dx.doi.org/10.17116/neiro20238701125DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
20
control group
20
months control
16
treatment malignant
12
therapy complex
8
complex treatment
8
malignant gliomas
8
group photodynamic
8
patients grade
8
grade iii
8

Similar Publications

Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.

View Article and Find Full Text PDF

The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.

View Article and Find Full Text PDF

Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives.

Inorg Chem

January 2025

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Photothermal therapy is a promising strategy for treating tumors and bacterial infections by using light irradiation to locally heat tissues. Metalloisoporphyrinoid materials have been investigated for their use as singlet oxygen photosensitizers for photodynamic therapy but remain underexplored as photothermal agents. Recently, two metallophlorin and two metalloisocorrole materials were found to have strong near-infrared absorbance, with low photoluminescent quantum yields, suggesting high rates of nonradiative decay.

View Article and Find Full Text PDF

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!