Tuning Anomalous Floquet Topological Bands with Ultracold Atoms.

Phys Rev Lett

Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.

Published: January 2023

The Floquet engineering opens the way to create new topological states without counterparts in static systems. Here, we report the experimental realization and characterization of new anomalous topological states with high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice. The Floquet band topology is manipulated by tuning the driving-induced band crossings referred to as band inversion surfaces (BISs), whose configurations fully characterize the topology of the underlying states. We uncover various exotic anomalous topological states by measuring the configurations of BISs that correspond to the bulk Floquet topology. In particular, we identify an unprecedented anomalous Floquet valley-Hall state that possesses anomalous helical-like edge modes protected by valleys and a chiral state with high Chern number.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.043201DOI Listing

Publication Analysis

Top Keywords

topological states
12
anomalous floquet
8
ultracold atoms
8
floquet engineering
8
anomalous topological
8
floquet
6
tuning anomalous
4
topological
4
floquet topological
4
topological bands
4

Similar Publications

As an effective method to enhance the dielectric performance of polyolefin materials, polar side group modification has been extensively applied in the insulation and energy storage materials of electrical and electronic systems. In this work, two side groups with different topological structures were adopted, namely, vinyl acetate (VAc, aliphatic chain) and -vinyl-pyrrolidone (NVP, saturated ring), to modify polypropylene (PP) chemical grafting, and the effects of structural topology of the polar side group on the microscopic and macroscopic characteristics of PP, particularly on its electrical anti-breakdown ability, were investigated. Experimental results showed that the side group structural topology directly affected the crystallization and thermal properties of PP.

View Article and Find Full Text PDF

The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.

View Article and Find Full Text PDF

Topologically Engineered High- Quasi-BIC Metasurfaces for Enhanced Near-Infrared Emission in PbS Quantum Dots.

Nano Lett

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.

Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.

View Article and Find Full Text PDF

Dispersive nodal fermions along grain boundaries in Floquet topological crystals.

Sci Rep

January 2025

Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.

Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).

View Article and Find Full Text PDF

SD-LayerNet: Robust and label-efficient retinal layer segmentation via anatomical priors.

Comput Methods Programs Biomed

January 2025

Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria; Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.

Background And Objectives: Automated, anatomically coherent retinal layer segmentation in optical coherence tomography (OCT) is one of the most important components of retinal disease management. However, current methods rely on large amounts of labeled data, which can be difficult and expensive to obtain. In addition, these systems tend often propose anatomically impossible results, which undermines their clinical reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!