Developing Cr-free and non-noble metal catalysts with high activity, selectivity and durability for chemoselective hydrogenation of furfural to furfuryl alcohol is highly desirable yet challenging. In this study, we design a hollow mesoporous Co-N-C@mSiO nanostructure derived from ZIF-67 the encapsulation-pyrolysis strategy. The Co-N-C@mSiO catalyst exhibits excellent catalytic performance in the furfural hydrogenation towards furfuryl alcohol with good stability, and is much better than the Co-N-C catalyst originating from plain ZIF-67 and other reported transition metal catalysts. Characterization methods and control experiments show that Co-N species rather than Co metal should be catalytically active sites for the above reaction. The enhanced performance is associated with abundant Co-N active sites, good mass transport, and the SiO shell protection. This work provides a novel and facile strategy for preparing highly efficient non-precious metal catalysts to replace Cr-based and noble metal catalysts for furfural hydrogenation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr05831fDOI Listing

Publication Analysis

Top Keywords

metal catalysts
16
catalytic performance
8
derived zif-67
8
chemoselective hydrogenation
8
hydrogenation furfural
8
furfuryl alcohol
8
furfural hydrogenation
8
active sites
8
metal
5
enhancing catalytic
4

Similar Publications

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

With the encroaching issue of water pollution, the use of involved chemicals to remove pollutants from water is not only a risk of chemical contamination, a potential hazard to the environment and human health but also requires significant investment in managing and improving the chemicals. Therefore, alginate as one of the nanomaterial-adorned polysaccharides-based entity that usually extract from brown algae has been used as novel and more efficient catalysts in the removal of a variety of aqueous pollutants from wastewater, including ionic metals and organic/inorganic pollutants by using the adsorption techniques. Adsorption is a technique used in water treatment where non-polar or particles less soluble in water are stuck to the surface of the adsorbent and therefore purifying it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!