Brain metastasis is a common complication in melanoma patients with BRAF and NRAS mutations and has a poor prognosis. Although BRAF inhibitors are clinically approved, their poor brain penetration limits their efficacy in brain metastasis. Thus, melanoma brain metastasis still requires better treatment. Belvarafenib, a pan-RAF inhibitor, has reported antitumor activity in melanoma with RAF and RAS mutations in animal models and patients. However, brain permeability and antitumor efficacy on brain metastasis have not been determined. This study confirmed the brain penetration of belvarafenib, the antitumor activity on BRAF and NRAS mutant melanoma, and the efficacy on melanoma within the brain. Belvarafenib strongly suppressed melanoma in BRAF V600E mutant A375SM tumor-bearing mice. It also significantly inhibited tumor growth in NRAS mutant SK-MEL-30 and K1735 tumor-bearing mice and synergized to enhance the antitumor activity combined with cobimetinib or atezolizumab. Belvarafenib was penetrated at considerable levels into the brains of mice and rats following oral administration. The exposure of belvarafenib in the brain was similar to or higher than that in plasma, and this high brain penetration differed significantly from that of other BRAF inhibitors with low brain penetration. Most importantly, belvarafenib strongly reduced tumor burden and markedly improved survival benefits in mice intracranially implanted with A375SM melanoma. These results demonstrated that belvarafenib, which has favorable BBB permeability, and potent antitumor activity on the tumors with BRAF/NRAS mutations, may be a promising therapeutic option for patients with BRAF/NRAS mutant melanoma brain metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-023-10198-7DOI Listing

Publication Analysis

Top Keywords

brain metastasis
24
antitumor activity
20
melanoma brain
16
brain penetration
16
brain
13
melanoma
9
belvarafenib
8
potent antitumor
8
braf nras
8
braf inhibitors
8

Similar Publications

Metabolic adaptation of myeloid cells in the glioblastoma microenvironment.

Front Immunol

January 2025

Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France.

In recent decades, immunometabolism in cancers has emerged as an interesting target for treatment development. Indeed, the tumor microenvironment (TME) unique characteristics such as hypoxia and limitation of nutrients availability lead to a switch in metabolic pathways in both tumor and TME cells in order to support their adaptation and grow. Glioblastoma (GBM), the most frequent and aggressive primary brain tumor in adults, has been extensively studied in multiple aspects regarding its immune population, but research focused on immunometabolism remains limited.

View Article and Find Full Text PDF

Brain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes.

View Article and Find Full Text PDF

The patient was a 21-year-old man with a shadow on a chest roentgenogram taken during a medical checkup. According to blood testing, thoracoabdominal computed tomography, head magnetic resonance imaging, and lung tumor biopsy, we diagnosed a primary retroperitoneal germ cell tumor with multiple lung and brain metastases. Induction chemotherapy (4 courses of Bleomycin, Etoposide and Cisplatin) was started immediately.

View Article and Find Full Text PDF

Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.

View Article and Find Full Text PDF

Clinical severity grading of NF2-related schwannomatosis.

Orphanet J Rare Dis

January 2025

Department of Neurosurgery, Helios Klinikum Erfurt, Erfurt, Germany.

Background: NF2-related schwannomatosis (NF2) is associated with various tumors of the central and peripheral nervous system. There is a wide range of disabilities these patients may suffer from and there is no validated clinical classification for disease severity. We propose a clinical classification consisting of three severity grades to assist in patient management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!