Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpad016 | DOI Listing |
New Phytol
November 2024
State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2024
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland.
Herbivore-induced plant volatiles (HIPVs) are reliable cues that parasitoids can use to locate host patches. Interactions mediated by plant volatile organic compounds (VOCs) are vulnerable to disturbance by predicted climate change and air pollution scenarios. Abiotic stress-induced VOCs may act as false signals to parasitoids.
View Article and Find Full Text PDFMolecules
October 2024
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.
L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems.
View Article and Find Full Text PDFJ Invertebr Pathol
November 2024
Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling.
View Article and Find Full Text PDFBiol Lett
October 2024
Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce. In addition, the assumption that elicitors in oral secretions that trigger the volatile emissions are essential for the attraction of natural enemies has not yet been demonstrated under field conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!