A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fetal Endoscopic Third Ventriculostomy Is Technically Feasible in Prenatally Induced Hydrocephalus Ovine Model. | LitMetric

Background: Congenital obstructive hydrocephalus generates progressive irreversible fetal brain damage by ventricular enlargement and incremental brain tissue compression that leads to maldevelopment and poor clinical outcomes. Intrauterine treatments such as ventriculo-amniotic shunting have been unsuccessfully tried in the eighties.

Objective: To assess if prenatal endoscopic third ventriculostomy (ETV) is feasible in a large animal model and optimize this technique for ventricular decompression and potential arrest of fetal brain damage in fetal lambs.

Methods: We generated hydrocephalus in 50 fetal lambs by injecting a polymeric agent into the cisterna magna at midgestation (E85). Subsequently, 3 weeks later (E105), fetal ETV was performed using a small rigid fetoscope. The endoscopy entry point was located anterior to the coronal suture, 7 mm from the midline.

Results: We obtained clear visualization of the enlarged lateral ventricles by endoscopy in the hydrocephalic fetal lambs. The floor of the third ventricle was bluntly perforated and passed with the scope for a successful ETV. Total success was achieved in 32/50 cases (64%). Causes of failure were blurred vision or third ventricle obliteration by BioGlue in 10/50 (20%) cases, anatomic misdirection of the endoscope in 5 (10%) cases, 2 cases of very narrow foramen of Monro, and 1 case of choroid plexus bleeding. If we exclude the cases artificially blocked by the polymer, we had a successful performance of prenatal-ETV in 80% (32/40) of hydrocephalic fetuses.

Conclusion: Despite the inherent difficulties arising from ovine brain anatomy, this study shows that innovative fetal ETV is technically feasible in hydrocephalic fetal lambs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508554PMC
http://dx.doi.org/10.1227/neu.0000000000002361DOI Listing

Publication Analysis

Top Keywords

fetal lambs
12
fetal
9
endoscopic third
8
third ventriculostomy
8
technically feasible
8
fetal brain
8
brain damage
8
fetal etv
8
hydrocephalic fetal
8
third ventricle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!