Translocation of DNA during in vitro DNA synthesis on nuclear matrix bound replicational assemblies from regenerating rat liver was determined by measuring the processivity (average number of nucleotides added following one productive binding event of the polymerase to the DNA template) of nuclear matrix bound DNA polymerase alpha with poly(dT).oligo(A)10 as template primer. The matrix-bound polymerase had an average processivity (28.4 nucleotides) that was severalfold higher than the bulk nuclear DNA polymerase alpha activity extracted during nuclear matrix preparation (8.9 nucleotides). ATP at 1 mM markedly enhanced the activity and processivity of the matrix-bound polymerase but not the corresponding salt-soluble enzyme. The majority of the ATP-dependent activity and processivity enhancement was completed by 100 microM ATP and included products ranging up to full template length (1000-1200 nucleotides). Average processivity of the net ATP-stimulated polymerase activity exceeded 80 nucleotides with virtually all the DNA products greater than 50 nucleotides. Release of nuclear matrix bound DNA polymerase alpha by sonication resulted in a loss of ATP stimulation of activity and a corresponding decrease in processivity to a level similar to that of the salt-soluble polymerase (6.8 nucleotides). All nucleoside di- and triphosphates were as effective as ATP. Stimulation of both activity and processivity by the nonhydrolyzable ATP analogues adenosine 5'-O-(3-thiotriphosphate), 5'-adenylyl imidodiphosphate, and adenosine 5'-O-(1-thiotriphosphate) further suggested that the hydrolysis of ATP is not required for enhancement to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00392a020DOI Listing

Publication Analysis

Top Keywords

nuclear matrix
20
matrix bound
16
dna polymerase
16
polymerase alpha
16
bound dna
12
activity processivity
12
polymerase
9
dna
8
regenerating rat
8
rat liver
8

Similar Publications

The detection of residual nuclei in decellularized extracellular matrix (dECM) biomaterials is critical for ensuring their quality and biocompatibility. However, current evaluation methods have limitations in addressing impurity interference and providing intelligent analysis. In this study, we utilized four staining techniques-hematoxylin-eosin staining, acetocarmine staining, the Feulgen reaction and 4',6-diamidino-2-phenylindole staining-to detect residual nuclei in dECM biomaterials.

View Article and Find Full Text PDF

Hepatic conditioning results in better lung endothelial cell preservation under hypoxic environment in vitro.

Int J Artif Organs

January 2025

Departments of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Background: as we look to extend lung perfusion times (EVLP) to improve preservation, the metabolic activity of the lungs will require support from other organ functions. Active functional liver support, including detoxification, synthesis, and regulation, can improve lung preservation during EVLP. This study aimed to demonstrate the effects of hepatic conditioning of the EVLP perfusate on lung endothelium, via the receptor of advanced glycation end-products (RAGE)-nuclear-factor-κB (NF-κB) signaling in vitro.

View Article and Find Full Text PDF

Data-driven modeling of background radiation structure utilizing matrix profile in nuclear security.

Sci Rep

January 2025

Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA.

The inherently stochastic nature of radiation emissions makes modeling background radiation structure a particularly challenging research area. In source identification scenarios, which are critical to nuclear security, the complexity of background radiation modeling is intensified by dynamically changing factors that influence radiation measurements. Consequently, accurately modeling and estimating background radiation can significantly improve our nuclear security capabilities by enhancing the detection of anomalies within radiation data.

View Article and Find Full Text PDF

Importance: An accurate noninvasive biomarker test is needed for the early diagnosis of bladder cancer.

Objective: To evaluate the performance of a urinary DNA methylation test (PENK methylation) and compare its diagnostic accuracy with that of the nuclear matrix protein 22 (NMP22) test or urine cytology test.

Design, Setting, And Participants: In this prospective multicenter study at 10 sites in the Republic of Korea, individuals 40 years and older with hematuria undergoing cystoscopy within 3 months between March 11, 2022, and May 30, 2024, participated.

View Article and Find Full Text PDF

Objectives: To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).

Methods: Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!