Introduction: In our hospital, physicians noticed high free thyroxine (fT4) concentrations without complete suppression of thyroid-stimulating hormone (TSH) in blood samples of patients at the outpatient clinic, which appeared to occur more often following the introduction of a new fT4 immunoassay. This discordance may be explained by incorrect reference intervals, analytical issues, or patient-related factors. We aimed to establish the contribution of the possible factors involved.
Methods: Reference intervals of both fT4 immunoassays were re-evaluated using blood samples of healthy volunteers and the new immunoassay's performance was assessed using internal quality controls and external quality rounds. The frequency of discordant fT4 and TSH pairings obtained from laboratory requests were retrospectively analysed using a Delfia (n = 3174) and Cobas cohort (n = 3408). Last, a literature search assessed whether the time of blood draw and the time of levothyroxine (L-T4) ingestion may contribute to higher fT4 concentrations in L-T4 users.
Results: The original reference intervals of both fT4 immunoassays were confirmed and no evidence for analytical problems was found. The Delfia (n = 176, 5.5%) and Cobas cohorts (n = 295, 8.7%) showed comparable frequencies of discordance. Interestingly, 72-81% of the discordant results belonged to L-T4 users. Literature indicated the time of blood withdrawal of L-T4 users and, therefore, the time of L-T4 intake as possible explanations.
Conclusions: High fT4 without suppressed TSH concentrations can mainly be explained by L-T4 intake. Physicians and laboratory specialists should be aware of this phenomenon to avoid questioning the assay's performance or unnecessarily adapting the L-T4 dose in patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083678 | PMC |
http://dx.doi.org/10.1530/EC-22-0538 | DOI Listing |
Sci Rep
January 2025
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland.
Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia.
Thyroid dysfunctions are common in type 1 diabetes mellitus (T1DM) pregnancies, impacting embryogenesis and fetal neurodevelopment. This study investigates the effects of subclinical hypothyroidism and BDNF (Brain-derived neurotrophic factor) telomere length in T1DM mothers and their newborns. In a recent study, researchers found an inverse relationship between TSH (thyroid-stimulating hormone) levels and telomere length in the cord blood of newborns.
View Article and Find Full Text PDFBMC Psychiatry
December 2024
Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.
Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.
Endocrine
December 2024
Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Iodine nutrition during pregnancy plays an important role in fetal development and maternal outcomes. Iodine deficiency has been proved to be associated with maternal thyroid dysfunction, adverse fetal outcomes and neurodevelopmental disorders in offspring. At present, there are few studies concentrate on the effects of iodine excess during pregnancy on thyroid function, maternal and neonatal outcomes, and the results are still controversial.
View Article and Find Full Text PDFEnviron Res
December 2024
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China. Electronic address:
Background: As a class of synthetic chemicals, organophosphate esters (OPEs) were shown to have thyroid hormones (THs) disrupting potentials in animal studies, while epidemiological evidence on gestational exposure to OPEs and thyroid disruption is limited. Besides, assessment on the safety threshold of OPEs exposure during gestation is especially scarce.
Methods: Based on the Shanghai Minhang Birth Cohort Study, we measured maternal urine concentration of 8 OPE metabolites and THs levels in cord plasma and examined their associations using multiple linear regression and quantile g-computation (QGC) models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!