Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inspired by the diverse bioactivities of α-amino phosphine oxides, an efficient strategy for the synthesis of less researched α-(hydroxyamino)diarylphosphine oxides has been developed and their antitumor activities are explored. Under water as a solvent and catalyst-free conditions, the addition of nitrones and diphenylphosphine oxide occurs smoothly to afford α-(hydroxyamino) diarylphosphine oxides in high yields. This reaction features a wide substrate scope, facile starting materials, atom economy, and easy purification. Moreover, the biological evaluation revealed that two synthesized derivatives 5e and 5f could serve as interesting anti-cancer agents for further development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc06981d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!