Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination.

Nucleic Acids Res

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.

Published: April 2023

Transcriptional pause is essential for all types of termination. In this single-molecule study on bacterial Rho factor-dependent terminators, we confirm that the three Rho-dependent termination routes operate compatibly together in a single terminator, and discover that their termination efficiencies depend on the terminational pauses in unexpected ways. Evidently, the most abundant route is that Rho binds nascent RNA first and catches up with paused RNA polymerase (RNAP) and this catch-up Rho mediates simultaneous releases of transcript RNA and template DNA from RNAP. The fastest route is that the catch-up Rho effects RNA-only release and leads to 1D recycling of RNAP on DNA. The slowest route is that the RNAP-prebound stand-by Rho facilitates only the simultaneous rather than sequential releases. Among the three routes, only the stand-by Rho's termination efficiency positively correlates with pause duration, contrary to a long-standing speculation, invariably in the absence or presence of NusA/NusG factors, competitor RNAs or a crowding agent. Accordingly, the essential terminational pause does not need to be long for the catch-up Rho's terminations, and long pauses benefit only the stand-by Rho's terminations. Furthermore, the Rho-dependent termination of mgtA and ribB riboswitches is controlled mainly by modulation of the stand-by rather than catch-up termination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085680PMC
http://dx.doi.org/10.1093/nar/gkad051DOI Listing

Publication Analysis

Top Keywords

rho-dependent termination
12
transcriptional pause
8
stand-by catch-up
8
catch-up rho
8
stand-by rho's
8
rho's terminations
8
termination
7
stand-by
5
catch-up
5
rho
5

Similar Publications

Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon.

Mol Microbiol

January 2025

Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.

The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.

View Article and Find Full Text PDF

Bacterial transcription terminator, Rho is an RNA-dependent ATPase that terminates transcription. Several structures of pre-termination complexes of the Rho-transcription elongation complex (EC) revealed a static picture of components of the EC that come close to the nascent RNA-bound Rho, where many of the residues of EC reside ≤ 10 Å from the Rho residues. However, the in vitro-formed Rho-EC complexes do not reveal the in vivo Rho-EC dynamic interaction patterns during the termination process.

View Article and Find Full Text PDF

Transcription is the process by which genetic information is copied from DNA to RNA, and it can be divided into three stages: transcription initiation, elongation, and termination. Transcription termination is the last step of gene transcription and is crucial for accurate gene expression. Two prevailing modes of transcription termination exist in bacteria: Rho-dependent termination and intrinsic termination (Rho-independent termination).

View Article and Find Full Text PDF

Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities.

J Biol Chem

December 2024

Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India. Electronic address:

The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli.

View Article and Find Full Text PDF

Coming in out of the cold: Rho-dependent termination contributes to adaptation to cold shock.

Mol Cell

September 2024

Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA. Electronic address:

During cold shock, bacteria shut down translation of all but a set of cold-shock proteins critical for recovery; in this issue of Molecular Cell, Delaleau et al. show that Rho-dependent transcription termination plays an important role in cold adaptation, via temperature-regulated termination of the cold-shock protein mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!