A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nephroprotective effects of Candesartan Cilexetil against Cyclosporine A-induced nephrotoxicity in a rat model. | LitMetric

AI Article Synopsis

  • Cyclosporine A (CsA) is an immunosuppressive drug commonly used after organ transplants but can cause kidney damage (nephrotoxicity) as a significant side effect.
  • In a study with Wister Albino rats, researchers examined the effects of Candesartan Cilexetil (CC) on oxidative stress and kidney damage induced by CsA.
  • Results showed that CC treatment led to improved kidney function and reduced oxidative stress markers, suggesting that CC might help protect against CsA-induced nephrotoxicity, although further research is needed to understand how it works.

Article Abstract

Cyclosporine A (CsA), a well-known immunosuppressive drug, has been prescribed after organ transplantation and in a variety of disorders with an immunological origin. Nephrotoxicity is one of the most frequently stated problems associated with CsA, and therefore the treatment with CsA remains a big challenge. This study sets out to assess the ameliorative influences of Candesartan Cilexetil (CC) on oxidative stress and the nephrotoxic effect of CsA in a rat model. Twenty-four Wister Albino rats, 7-8-week-old, weighing 150-250g, were randomly categorized into three groups (eight animals in each group). These groups were the (1) CsA-treated group, (2) vehicle-treated group, and (3) CC-treated group. Bodyweights were assessed at the start and end of experiments. Renal function test and levels of glutathione peroxidase 1 catalase -CAT (Gpx1), catalase (CAT), superoxide dismutase (SOD), interleukin -2 (IL-2), and malondialdehyde (MDA) were investigated in renal tissues. Histological changes in kidneys were also evaluated. Data showed that levels of urea and creatinine in serum and levels of IL-2 and MDA in renal tissues were elevated in the CsA-treated group, with severe histological changes compared with the control group. Furthermore, tissue levels of Gpx1, CAT, and SOD were significantly decreased in CsA-treated in comparison with the control group. Treatment with CC for the rats subjected to CSA resulted in a marked reduction in levels of serum urea and creatinine and tissue levels of IL-2 and MDA. Levels of Gpx1, CAT, and SOD in renal tissues were greater in the CC-treatment group compared with the CsA-treated group. CC treatment reduced the deterioration of renal morphology compared with CsA treatment. The findings of this study suggest that CC could prevent CSA-induced nephrotoxicity through its anti-inflammatory and antioxidant influences. Considerably more work needs to be done to determine the mechanistic insight behind the ameliorative effect of CC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884341PMC
http://dx.doi.org/10.25122/jml-2021-0227DOI Listing

Publication Analysis

Top Keywords

csa-treated group
12
renal tissues
12
group
9
candesartan cilexetil
8
rat model
8
csa treatment
8
histological changes
8
urea creatinine
8
levels il-2
8
il-2 mda
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!