Variants in TTN are associated with a broad range of clinical phenotypes, from dominant adult-onset dilated cardiomyopathy to recessive infantile-onset myopathy. However, few foetal cases have been reported for multiple reasons. Next-generation sequencing has facilitated the prenatal identification of a growing number of suspected titinopathy variants. We investigated six affected foetuses from three families, completed the intrauterine course of the serial phenotypic spectrum of TTN, and discussed the genotype-phenotype correlations from a broader perspective. The recognizable prenatal feature onset at the second trimester was started with reduced movement, then contracture 3-6 weeks later, followed with/without hydrops, finally at late pregnancy was accompanied with polyhydramnio (major) or oligohydramnios. Two cases with typical arthrogryposis-hydrops sequences identified a meta-only transcript variant c.36203-1G>T. Deleterious transcriptional consequences of the substitution were verified by minigene splicing analysis. Case 3 identified a homozygous splicing variant in the constitutively expressed Z-disc. It presented a milder phenotype than expected, which was presumably saved by the isoform of corons. A summary of the foetal-onset titinopathy cases implied that variants in TTN present with a series of signs and a spectrum of clinical severity, which followed the dosage/positional effect; the meta-only transcript allele involvement may be a prerequisite for the development of fatal hydrops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907677 | PMC |
http://dx.doi.org/10.3389/fgene.2022.1064474 | DOI Listing |
Front Immunol
January 2025
Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States.
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.
View Article and Find Full Text PDFPeerJ
January 2025
Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S-Institute for Research & Innovation in Health, Porto, Portugal.
Background: The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
University of Utah Health, Division of Endocrinology, Salt Lake City, UT 84108, USA.
Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene . Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex.
View Article and Find Full Text PDFFront Pharmacol
January 2025
The First Department of Specialty Medicine, Inner Mongolia Corps Hospital of The Chinese People's Armed Police Force, Hohhot, China.
Introduction: Eculizumab is a C5 complement inhibitor approved by the FDA for the targeted treatment of four rare diseases, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), generalized myasthenia gravis (gMG), and aquaporin-4 immunoglobulin G-positive optic neuromyelitis optica spectrum disorders (AQP4-IgG+NMOSD). The current study was conducted to assess real-world adverse events (AEs) associated with eculizumab through data mining of the FDA Adverse Event Reporting System (FAERS).
Methods: Disproportionality analyses, including Reporting Ratio Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) algorithms were used to quantify the signals of eculizumab-associated AEs.
F1000Res
January 2025
Department of Human Pathology, University of Nairobi, Nairobi, Nairobi County, Kenya.
Background: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!