Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies have confirmed the significant effects of single forest stand attributes, such as forest type (FT), understory vegetation cover (UVC), and understory vegetation height (UVH) on visitors' visual perception. However, rarely study has yet clearly determined the relationship between vegetation permeability and visual perception, while the former is formed by the interaction of multiple forest stand attributes (i.e., FT, UVC, UVH). Based on a mixed factor matrix of FT (i.e., coniferous forests and broadleaf), UVC level (i.e., 10, 60, and 100%), and UVH level (0.1, 1, and 3 m), the study creates 18 immersive virtual forest videos with different stand attributes. Virtual reality eye-tracking technology and questionnaires are used to collect visual perception data from viewing virtual forest videos. The study finds that vegetation permeability which is formed by the interaction effect of canopy density (i.e., FT) and understory density (i.e., UVC, UVH), significantly affects participant's visual perception: in terms of visual physiology characteristics, pupil size is significantly negatively correlated with vegetation permeability when participants are viewing virtual reality forest; in terms of visual psychological characteristics, the understory density formed by the interaction of UVC and UVH has a significant impact on visual attractiveness and perceived safety and the impact in which understory density is significantly negatively correlated with perceived safety. Apart from these, the study finds a significant negative correlation between average pupil diameter and perceived safety when participants are viewing virtual reality forests. The findings may be beneficial for the maintenance and management of forest parks, as well as provide insights into similar studies to explore urban public green spaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902884 | PMC |
http://dx.doi.org/10.3389/fpubh.2023.1089423 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!