Foxtail millet ( (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward's clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905688PMC
http://dx.doi.org/10.3389/fgene.2023.1052575DOI Listing

Publication Analysis

Top Keywords

foxtail millet
24
genetic diversity
16
genetic resources
12
novel alleles
12
millet beauv
8
landraces
8
yield yield-related
8
yield-related traits
8
millet landraces
8
released cultivars
8

Similar Publications

Backgrounds: Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development.

View Article and Find Full Text PDF

Microwave-assisted protein extraction from foxtail millet: Optimization, structural characterization, techno-functional properties, and bioactivity of peptides.

Int J Biol Macromol

December 2024

Food Engineering and Bioprocess Technology Program, Department of Food, Agriculture, and Bioresources, School of Environment, Resources, and Development, Asian Institute of Technology, Khlong Luang, Pathumthani 12120, Thailand. Electronic address:

This research investigates the impact of microwave power, processing time, and solid-to-solvent ratio on protein recovery from foxtail millet (Setaria italica), using an artificial neural network (ANN) and genetic algorithm (GA). The extracted protein and subsequent hydrolysates were also evaluated for their techno-functional, structural, and digestibility properties. The ANN model, trained with the Levenberg-Marquardt algorithm and optimized by a GA, identified optimal extraction conditions (960 W, 66.

View Article and Find Full Text PDF

Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.

View Article and Find Full Text PDF

Alfalfa (Medicago sativa) is known to release allelopathic substances to affect the germination and growth of other plants, which have the potential to be applied in controlling weeds. Green foxtail (Setaria viridis) and barnyardgrass (Echinochloa crus-galli), as malignant weeds worldwide, also pose a serious threat to alfalfa in northern China. In this study, the sensitivity of the two weeds to the extracts from the first, second, and third stubbles of six varieties were investigated to further reveal the allelopathic interference of different varieties of alfalfa on notorious weeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!