Toll-like receptor 4 (TLR4) is a reliable target for the development of vaccine adjuvants. To identify novel TLR4 ligands with improved immunological properties for use as adjuvants for a RBD-hFc based SARS-CoV-2 vaccine, herein, natural monophosphoryl lipid A (MPLA) and nine of its derivatives were designed and synthesized. Immunological evaluation showed that compounds 1, 3, 5 and 7 exhibited comparative or better adjuvant activity than clinically used Al adjuvants, and are expected to be a promising platform for the development of new adjuvants used for a RBD-hFc based SARS-CoV-2 vaccine. Preliminary structure-activity relationship analysis of the MPLA derivatives showed that the replacement of the functional groups at the C-1, C-4' or C-6' position of MPLA has an effect on its biological activity. In addition, we found that the combination of MPLA and Al was feasible for immunotherapy and could further enhance immune responses, providing a new direction toward the immunological enhancement of RBD-hFc based SARS-CoV-2 vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890559 | PMC |
http://dx.doi.org/10.1039/d2md00298a | DOI Listing |
RSC Med Chem
January 2023
Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
Toll-like receptor 4 (TLR4) is a reliable target for the development of vaccine adjuvants. To identify novel TLR4 ligands with improved immunological properties for use as adjuvants for a RBD-hFc based SARS-CoV-2 vaccine, herein, natural monophosphoryl lipid A (MPLA) and nine of its derivatives were designed and synthesized. Immunological evaluation showed that compounds 1, 3, 5 and 7 exhibited comparative or better adjuvant activity than clinically used Al adjuvants, and are expected to be a promising platform for the development of new adjuvants used for a RBD-hFc based SARS-CoV-2 vaccine.
View Article and Find Full Text PDFVaccines (Basel)
September 2022
Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine.
View Article and Find Full Text PDFACS Nano
June 2021
Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causal agent of COVID-19 and stands at the center of the current global human pandemic, with death toll exceeding one million. The urgent need for a vaccine has led to the development of various immunization approaches. mRNA vaccines represent a cell-free, simple, and rapid platform for immunization, and therefore have been employed in recent studies toward the development of a SARS-CoV-2 vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!