Electroacupuncture alleviates perioperative hypothalamus-pituitary-adrenal axis dysfunction circRNA-miRNA-mRNA networks.

Front Mol Neurosci

Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan University, Shanghai, China.

Published: January 2023

Electroacupuncture (EA) has long been used to alleviate surgery-induced hypothalamic-pituitary-adrenal axis dysfunction. However, its downstream gene targets in the brain remain unclear. The aim of the present study was to clarify the potential targets of EA based on RNA sequencing techniques (RNA-seq). Rats were divided into normal control (NC), hepatectomy surgery (HT), HT + EA, and HT + sham EA groups followed by RNA-seq of two representative nuclei in the hypothalamus and amygdala. Weighted Gene Co-expression Network Analysis and Gene Set Enrichment Analysis identified six gene modules associated with neuroendocrine transmitters and neural remodeling in the hypothalamus. Furthermore, circRNA-miRNA-mRNA interaction networks revealed EA-related candidate miRNAs and circRNAs, of which opioid receptor mu 1 might be an EA-specific target, and showed regulation by competing endogenous RNA. We identified the neuroendocrine circRNA-miRNA-mRNA networks through which EA has an effect on HPA axis dysfunction, thus providing potential targets and future research directions for EA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905746PMC
http://dx.doi.org/10.3389/fnmol.2023.1115569DOI Listing

Publication Analysis

Top Keywords

axis dysfunction
12
circrna-mirna-mrna networks
8
potential targets
8
electroacupuncture alleviates
4
alleviates perioperative
4
perioperative hypothalamus-pituitary-adrenal
4
hypothalamus-pituitary-adrenal axis
4
dysfunction circrna-mirna-mrna
4
networks electroacupuncture
4
electroacupuncture long
4

Similar Publications

Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.

View Article and Find Full Text PDF

Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.

View Article and Find Full Text PDF

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy.

Life Metab

December 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China.

Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment.

View Article and Find Full Text PDF

() infection is a known inducer of various gastrointestinal diseases, including gastritis, gastric ulcers, and gastric cancer. However, in recent years, research on the potential association between infection and metabolic dysfunction-associated steatohepatitis (MASH) has been scarce. This large-scale multicenter study, covering more than 360 hospitals across 26 medical systems in the United States, systematically evaluated the association between infection and MASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!