Background: Gastrointestinal (GI) functions are controlled by the enteric nervous system (ENS) in vertebrates, but data on snakes are scarce, as most studies were done in mammals. However, the feeding of many snakes, including Crotalus atrox, is in strong contrast with mammals, as it consumes an immense, intact prey that is forwarded, stored, and processed by the GI tract. We performed immunohistochemistry in different regions of the GI tract to assess the neuronal density and to quantify cholinergic, nitrergic, and VIPergic enteric neurons. We recorded motility patterns and determined the role of different neurotransmitters in the control of motility. Neuroimaging experiments complemented motility findings.
Results: A well-developed ganglionated myenteric plexus (MP) was found in the oesophagus, stomach, and small and large intestines. In the submucous plexus (SMP) most neurons were scattered individually without forming ganglia. The lowest number of neurons was present in the SMP of the proximal colon, while the highest was in the MP of the oesophagus. The total number of neurons in the ENS was estimated to be approx. 1.5 million. In all regions of the SMP except for the oesophagus more nitric oxide synthase+ than choline-acetyltransferase (ChAT)+ neurons were counted, while in the MP ChAT+ neurons dominated. In the SMP most nerve cells were VIP+, contrary to the MP, where numerous VIP+ nerve fibers but hardly any VIP+ neuronal cell bodies were seen. Regular contractions were observed in muscle strips from the distal stomach, but not from the proximal stomach or the colon. We identified acetylcholine as the main excitatory and nitric oxide as the main inhibitory neurotransmitter. Furthermore, 5-HT and dopamine stimulated, while VIP and the ß-receptor-agonist isoproterenol inhibited motility. ATP had only a minor inhibitory effect. Nerve-evoked contractile responses were sodium-dependent, insensitive to tetrodotoxin (TTX), but sensitive to lidocaine, supported by neuroimaging experiments.
Conclusions: The structure of the ENS, and patterns of gastric and colonic contractile activity of Crotalus atrox are strikingly different from mammalian models. However, the main excitatory and inhibitory pathways appear to be conserved. Future studies have to explore how the observed differences are an adaptation to the particular feeding strategy of the snake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909958 | PMC |
http://dx.doi.org/10.1186/s12983-023-00484-1 | DOI Listing |
Int J Mol Sci
November 2024
College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea.
Snakebite envenoming is a significant health threat, particularly in tropical regions, causing substantial morbidity and mortality. Traditional treatments, including antivenom therapy, have limitations and associated risks. This research aims to discover novel phytochemical antidotes for snakebites, specifically targeting the western diamondback rattlesnake () venom metalloproteinase Atrolysin.
View Article and Find Full Text PDFToxicon
November 2024
Laboratorio de Toxinopatología, Departamento de Patología, Facultad de Medicina, José E. Uriburu 950, 5(to) piso (1114), Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto Nacional de Producción de Biológicos I.N.P.B. - A.N.L.I.S. ''Dr. Carlos G. Malbrán'', Ministerio de Salud, Av. Vélez Sarsfield 563 (1282), Buenos Aires, Argentina; Área Investigación y Desarrollo - Venenos, Aracnario-Serpentario. Instituto Nacional de Producción de Biológicos, A.N.L.I.S. "Dr. Carlos G. Malbrán", Av. Velez Sarsfield 563 (1282). Buenos Aires, Argentina. Electronic address:
In this work, we describe an easy, simple, and cost-effective method to assess the proteolytic activity of snake venoms. The method is based on measuring the hydrolytic halo formed by gelatin radial hydrolysis following the incubation of venoms on a solid gelatin-agarose plate. Venoms from Bothrops (B.
View Article and Find Full Text PDFCureus
August 2024
Emergency Medicine, Saint Vincent Hospital, Erie, USA.
Toxins (Basel)
August 2024
Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
Worldwide, it is estimated that there are 1.8 to 2.7 million cases of envenoming caused by snakebites.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
Ruthenium chloride (RuCl) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl inhibition of the fibrinogenolytic effects of venom could be modulated by vehicle composition in human plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!