In this study, we have touched on two goals of sustainable development, namely, the provision of clean water and sanitation and clean energy at acceptable prices, hoping for good health for all ages. A green economical method was used to prepare silver nanoparticles from chitosan biopolymer. AgNPs were fully characterized using UV-Vis, FTIR, XRD, HR-TEM, and EDX analysis. Different concentrations (0.02-0.18 g/L) of the nanoparticles were integrated into a mixture of heterogeneous nano photocatalysts TiO and ZnO (1:1 weight ratio) under UV irradiation for the photocatalytic degradation of Acid Red 37 textile dye to obtain clean water. The kinetic description of the performed photocatalytic process was presented assuming a pseudo-first-order reaction. The data revealed that increasing the concentration of AgNPs in the catalytic mixture showed a high apparent rate constant (k) accompanied by an increase in the apparent quantum yield (%Q), followed by dye destruction after a very short time (t = 3 min). Since the photocatalytic degradation process consumes electrical energy, the electrical energy per order (EE/O) was calculated, showing a low value of 20 kWh/m/order, using 0.18 g/L AgNPs, indicating that the elicited photocatalytic degradation method is a sustainable one for the mineralization of the targeted dye.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911601PMC
http://dx.doi.org/10.1038/s41598-023-29507-xDOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
16
textile dye
8
silver nanoparticles
8
clean water
8
electrical energy
8
photocatalytic
5
sustainable energy-efficient
4
energy-efficient photocatalytic
4
degradation
4
degradation textile
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach.

Chemosphere

January 2025

Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840 South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium. Electronic address:

The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H/Ar gas at 500°C, and the introduction of oxygen vacancies was confirmed using various characterization techniques.

View Article and Find Full Text PDF

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!