The ultra-thin heterostructure of PrSrMnO(15 nm)/PrCaMnO(15 nm)/SrTiO fabricated using pulsed laser deposition technique exhibits the phase-segregated nature wherein the ferromagnetism of PrSrMnO, and the antiferromagnetic state of PrCaMnO coexist in proximity. The observation of two exciting phenomena in the grown ultra-thin heterostructure, namely, the kinetic arrest and training effect, confirms its phase-segregated nature. The melting of the antiferromagnetic state in PrCaMnO into a ferromagnetic state due to the interfacial interaction arising from the magnetic proximity of the ferromagnetic clusters of PrSrMnO have been observed. A metal-insulator transition (T) found at 215 K, close to its Curie temperature (T) observed at 230 K, reveals a strong correlation between the electrical transport and the magnetization of the ultra-thin heterostructure. The electrical conduction in the high-temperature regime is explained in terms of the adiabatic small polaron hopping model. While the resistance in the metallic regime for temperatures above 100 K is contributed by the inelastic scattering due to the two-magnons, in the metallic regime below 100 K, the one-magnon inelastic scattering contribution is prevalent. An enhanced colossal magnetoresistance property near room temperature is obtained in the ultra-thin heterostructure arising from the proximity-driven interfacial interaction, making it a suitable candidate for technological applications near room temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911380 | PMC |
http://dx.doi.org/10.1038/s41598-023-28314-8 | DOI Listing |
Adv Sci (Weinh)
December 2024
Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
To develop voltage-controlled magnetization switching technologies for spintronics applications, a highly (422)-oriented CoFeSi layer on top of the piezoelectric PMN-PT(011) is experimentally demonstrated by inserting a vanadium (V) ultra-thin layer. The strength of the growth-induced magnetic anisotropy of the (422)-oriented CoFeSi layers can be artificially controlled by tuning the thicknesses of the inserted V and the grown CoFeSi layers. As a result, a giant converse magnetoelectric effect (over 10 s m) and a non-volatile binary state at zero electric field are simultaneously achieved in the (422)-oriented CoFeSi/V/PMN-PT(011) multiferroic heterostructure.
View Article and Find Full Text PDFAdv Mater
December 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
The reduced structural complexity of atomically thin amorphous carbons makes it suitable for semiconductor technology. Inherent challenges arise from transfer processes subsequent to growth on metallic substrates, posing significant challenges to the accurate characterization of amorphous materials, thereby compromising the reliability of spectroscopic analysis. Here this work presents a novel approach: direct growth of ultra-thin amorphous carbon with tuned disorder on a dielectric substrate (SiO/Si) using photochemical reaction and thermal annealing process with a solid precursor.
View Article and Find Full Text PDFNanophotonics
April 2024
Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
Spintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
As a half-reaction in anion exchange membrane water electrolysis (AEMWE) technology, the hydrogen evolution reaction (HER) at the cathode is severely hindered by the sluggish reaction kinetics involved in additional water dissociation step, which results in large overpotentials and low energy conversion efficiency. Here, we develop a nano-heterostructure composed of ultra-thin WN shells over NiN nanoparticles (NiN@WN) as efficient catalysts, in which built-in interfacial electric field (BIEF) is created owing to the distinct lattice arrangements and work functions of biphasic metal nitrides. The BIEF facilitates the electron localization around the interface and enables high valence W and more exposed binding sites in the surface WN shell for accelerating the water dissociation step, ultimately leading to a remarkable reduction in the energy barriers of RDS from 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!