The impact of epigenetic mechanisms in migraine: Current knowledge and future directions.

Cephalalgia

Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.

Published: February 2023

Background: Epigenetic mechanisms, including DNA methylation, microRNAs and histone modifications, may modulate the genetic expression in migraine and its interaction with internal and external factors, such as lifestyle and environmental changes.

Objective: To summarize, contextualize and critically analyze the published literature on the current state of epigenetic mechanisms in migraine in a narrative review.

Findings: The studies published to date have used different approaches and methodologies to determine the role of epigenetic mechanisms in migraine. Epigenetic changes seem to be involved in migraine and are increasing our knowledge of the disease.

Conclusions: Changes in DNA methylation, microRNA expression and histone modifications could be utilized as biomarkers that would be highly valuable for patient stratification, molecular diagnosis, and precision medicine in migraine.

Download full-text PDF

Source
http://dx.doi.org/10.1177/03331024221145916DOI Listing

Publication Analysis

Top Keywords

epigenetic mechanisms
16
mechanisms migraine
12
dna methylation
8
histone modifications
8
migraine
6
impact epigenetic
4
mechanisms
4
migraine current
4
current knowledge
4
knowledge future
4

Similar Publications

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

Interferon-induced protein 44-like () is regarded as an immune-related gene and is a member of interferon-stimulated genes (ISGs). They participate in network transduction, and its own epigenetic modifications, apoptosis, cell-matrix formation, and many other pathways in tumors, autoimmune diseases, and viral infections. The current review provides a comprehensive overview of the onset and biological mechanisms of and its potential clinical applications in malignant tumors and non-neoplastic diseases.

View Article and Find Full Text PDF

Advancements in pseudouridine modifying enzyme and cancer.

Front Cell Dev Biol

December 2024

Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.

Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.

View Article and Find Full Text PDF

Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!