Imaging of Lipid Droplets and Oxygen Status in Hepatic Tissues of Nonalcoholic Fatty Liver Model Mice Using a Lipophilic Ir(III) Complex.

Anal Chem

Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.

Published: February 2023

Nonalcoholic fatty liver disease (NAFLD) is becoming common worldwide. In pathophysiological studies of NAFLD, an optical probe that enables visualization of lipid droplets (LDs) and imaging of oxygen status in hepatic tissues simultaneously would be very useful. Here, we present the phosphorescent Ir(III) complex BTP ((btp)Ir(acac) (btp = benzothienylpyridine, acac = acetylacetone)) as the first probe that meets this requirement. BTP was efficiently taken up into cultured 3T3-L1 adipocytes and selectively accumulated into LDs. Quantifying oxygen levels in LDs based on the phosphorescence lifetime of BTP allowed us to track changes in cellular oxygen tension after treatment with metabolic stimulants. Phosphorescence lifetime imaging microscopy combined with intravenously administered BTP in mice enabled specific visualization of LDs in hepatic lobules and simultaneous imaging of the oxygen gradient that decreased from the portal vein (PV) to the central vein (CV). NAFL model mice were created by feeding a high-fat diet (HFD) to mice for 3 or 7 days. The mice fed an HFD showed a marked increase in the amount and size of LDs in hepatocytes compared with those fed a normal diet, leading to abnormal microvascular structures. In addition, HFD-fed mice also exhibited reduced oxygen tension in areas other than the CV. Multicolor imaging with the LD-accumulated oxygen probe BTP and vasculature-staining FITC-lectin suggested that structural distortions of the sinusoidal microvasculature caused by enlarged LDs were associated with partial hypoxia in NAFL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c04746DOI Listing

Publication Analysis

Top Keywords

lipid droplets
8
oxygen status
8
status hepatic
8
hepatic tissues
8
nonalcoholic fatty
8
fatty liver
8
model mice
8
iriii complex
8
imaging oxygen
8
phosphorescence lifetime
8

Similar Publications

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

While fructose is a key dietary component, concerns have been raised about its potential risks to the liver. This study aimed to assess quercetin's protective effects against fructose-induced mouse hepatic steatosis. Thirty-two male C57BL/6J mice were randomly allocated into four groups: control, high fructose diet (HFrD), HFrD supplemented with low-dose quercetin (HFrD+LQ), and HFrD supplemented with high-dose quercetin (HFrD+HQ).

View Article and Find Full Text PDF

Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem.

View Article and Find Full Text PDF

Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.

Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.

View Article and Find Full Text PDF

Immune Aging in Rheumatoid Arthritis.

Arthritis Rheumatol

January 2025

Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA.

Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with auto-destructive immunity in affected patients, including the process of immune aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!