Trehalose is a primary sugar and its distribution across the insect body, regulated by trehalose transporters (TRETs), is essential for sugar metabolism and energy homeostasis. The large diversity of Tret-like sugar transporters (ST), belonging to SLC2A transporter family, in polyphagous insects probably contributes to their extremely adaptive nature. We aim to study spatio-temporal expression dynamics and functional relevance of ST transcript variants in the lepidopteran model organism, Helicoverpa armigera. Identification of 69 putative Tret-like HaST transcript variants from databases and their digital gene expression analysis indicated tissue and development-specific expression patterns. Phylogenetic and sequence similarity network analysis of HaSTs signify evolutionary divergence, while motif and structure analysis depicted conserved signatures. In vitro gene expression validation for selected genes depicts that HaST09 and 69 are fat body and haemolymph-specific. While, HaST06, 30, 36 and 57 are developmental stage or sex-specific. HaST69 has high expression in the haemolymph of fifth instar larvae. In the presence of trehalose metabolism inhibitors and abiotic stress, HaSTs expression show dysregulation, indicating their possible association with trehalose metabolism and stress recovery. In vivo gene silencing of HaST69 resulted in reduced trehalose accumulation in the insect body, suggesting its plausible role in sugar metabolism. The overall understanding of HaST diversity and expression dynamics highlights their putative roles in sugar transport during adaptation and stress recovery of insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2023.147259 | DOI Listing |
J Integr Plant Biol
December 2024
College of Life Sciences, Capital Normal University, Beijing, 100048, China.
The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China. Electronic address:
In our previous research, we identified that treatment of Helicoverpa armigera with ZQ-8 led to upregulation of CYP450 genes. To clarify the metabolic pathway of ZQ-8, this study analyzed the expression of CYP450 genes and proteins in H. armigera after ZQ-8 treatment through transcriptomics and proteomics.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
Regulatory-associated protein of TOR (RAPTOR) is a key component of TOR complex 1 (TORC1), which determines the lysosomal location and substrate recruitment of TORC1 to promote cell growth and prevent autophagy. Many studies in recent decades have focused on the posttranslational modification of RAPTOR; however, little is known about the transcriptional regulatory mechanism of Raptor. Using the lepidopteran insect cotton bollworm (Helicoverpa armigera) as model, we reveal the transcriptional regulatory mechanism of Raptor.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China. Electronic address:
The enzyme 6-phosphofructokinase-1 (PFK1) acts as the primary rate-limiting enzyme in glycolysis, catalyzing the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. This glycolytic process provides essential substrates for the synthesis of sex pheromones. However, the specific function of PFK1 in sex pheromone biosynthesis remains unidentified.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
School of Life Sciences, Central China Normal University, Wuhan 430070, China. Electronic address:
Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!