Improved charge-transfer resonance in graphene oxide/ZrO substrates for plasmonic-free SERS determination of methyl parathion.

Chemosphere

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico. Electronic address:

Published: April 2023

This work reports a sensitive SERS substrate based on graphene oxide (GO) and quantum-sized ZrO nanoparticles (GO/ZrO) for label-free determination of the organophosphate pesticide methyl parathion (MP). The enhanced light-matter interactions and the consequent SERS effect in these substrates resulted from the effective charge transfer (CT) mechanism attributed to synergistic contributions of three main factors: i) the strong molecular adherence of the MP molecules and the ZrO surface which allows the first layer-effect, ii) the relatively abundant surface defects in low dimensional ZrO semiconductor NPs, which act as intermediate electronic states that reduce the large bandgap barrier, and iii) the hindered charge recombination derived from the transference of the photoinduced holes to the GO layer. This mechanism allowed an enhancement factor of 8.78 × 10 for GO/ZrO-based substrates, which is more than 5-fold higher than the enhancement observed for platforms without GO. A detection limit of 0.12 μM was achieved with an outstanding repeatability (variation ≤4.5%) and a linear range up to 10 μM, which is sensitive enough to determine the maximal MP concentration permissible in drinking water according to international regulations. Furthermore, recovery rates between 97.4 and 102.1% were determined in irrigation water runoffs, strawberry and black tea extracts, demonstrating the reliability of the hybrid GO/ZrO substrate for the organophosphate pesticides quantification in samples related to agri-food sectors and environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138081DOI Listing

Publication Analysis

Top Keywords

methyl parathion
8
improved charge-transfer
4
charge-transfer resonance
4
resonance graphene
4
graphene oxide/zro
4
oxide/zro substrates
4
substrates plasmonic-free
4
plasmonic-free sers
4
sers determination
4
determination methyl
4

Similar Publications

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Organophosphorus (OP) pesticides (e.g., parathion) and nerve agents (e.

View Article and Find Full Text PDF

It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.

View Article and Find Full Text PDF

A flexible 3D ordered SERS sensor for rapid and reliable detection of pesticide residues in fruits.

Chem Commun (Camb)

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

We fabricated flexible, three-dimensional (3D) ordered silicon nanowire (SiNW) arrays decorated with high-density silver nanoparticles (AgNPs) for the sensitive and reproducible detection of pesticide residues. These sensors demonstrated a detection limit of 10 M for methyl parathion (MPT) on curved surfaces.

View Article and Find Full Text PDF

This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!