Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, is commonly used to induce anaesthesia during cancer surgery and relieve neuropathic and cancer pain. This study was conducted to assess whether ketamine has any inhibiting effects on neuroglioma (H4) and lung cancer cells (A549) in vitro. The cultured H4 and A549 cells were treated with ketamine and MK801 (0.1, 1, 10, 100, or 1000 μM) for 24 h. The expressions of glutamate receptors on both types of cancer cells were assessed with qRT-PCR. In addition, cell proliferation and migration were assessed with cell counting Kit-8 and wound healing assays. Cyclin D1, matrix metalloproteinase 9 (MMP9), phosphorylation of extracellular signal-regulated kinase (pERK), and cleaved-caspase-3 expression together with reactive oxygen species (ROS) were also assessed with Western blot, immunostaining, and/or flowcytometry. NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors were expressed on both H4 and A549 cells. Ketamine inhibited cancer cell proliferation and migration in a dose-dependent manner by suppressing the cell cycle and inducing apoptosis. Ketamine decreased cyclin D1, pERK, and MMP9 expression. In addition, ketamine increased ROS and cleaved caspase-3 expression and induced apoptosis. The anti-cancer effect of ketamine was more pronounced in A549 cells when compared with H4 cells. MK801 showed similar effects to those of ketamine. Ketamine suppressed cell proliferation and migration in both neuroglioma and lung cancer cells, likely through the antagonization of NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2023.175580 | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
Abnormal ferrous ion (Fe) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, , capable of simultaneously monitoring Fe and viscosity.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Institute of Cancer Research, London, UK.
Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
Cell Commun Signal
January 2025
Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
Background: The lack of predictive biomarkers contributes notably to the poor outcomes of patients with pancreatic ductal adenocarcinoma (PDAC). Cancer-associated fibroblasts (CAFs) are the key components of the prominent PDAC stroma. Data on clinical relevance of CAFs entering the bloodstream, known as circulating CAFs (cCAFs) are scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!