A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Studying effective column lengths in liquid chromatography of large biomolecules. | LitMetric

Studying effective column lengths in liquid chromatography of large biomolecules.

J Chromatogr A

Waters Corporation, 34 Maple Street, Milford, MA 01757, United States.

Published: March 2023

Based on their nature, large molecules tend to exhibit on-off elution such that only a small segment of a column bed participates in their separation. We were intrigued to investigate empirical data on this behavior and to apply a simple method to estimate the length of column bed that is needed to produce an effective separation. Models were derived by rearranging the linear solvent strength (LSS) model equations, and data sets from almost 100 different separation conditions were treated to illustrate effects for various types of solutes as separated by reversed phase (RP), ion-pair reversed phase (IP-RP), ion-exchange (IEX), hydrophobic interaction (HIC) and hydrophilic interaction (HILIC) chromatography. By empirically measuring S parameters (S is a solute dependent model parameter, it describes how sensitive is the solute retention to mobile phase composition), and calculating for an exit retention factor of 0.5, we have determined that there is little to no benefit to separating moderately sized solutes (5 - 10 kDa) with a column bed that is longer than 3 cm, particularly when a less than 20 min gradient is desired. Moreover, even shorter columns would be predicted to be adequate for 100 - 150 kDa molecules. Interpretations of this sort have become possible because there is some correlation between a solute's molecular weight and its S parameter. That is, empirical observations on retention behavior are not needed to select appropriate column lengths; molecular weight provides a sufficient approximation. With these insights, we suggest reconsidering the routine use of 5 - 15 cm long columns for >10 kDa biomolecule separations and instead propose that a new focus be placed on 1-2 cm long columns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.463848DOI Listing

Publication Analysis

Top Keywords

column bed
12
column lengths
8
reversed phase
8
molecular weight
8
long columns
8
column
5
studying effective
4
effective column
4
lengths liquid
4
liquid chromatography
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!