A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular adhesion and chondrogenic differentiation inside an alginate-based bioink in response to tailorable artificial matrices and tannic acid treatment. | LitMetric

Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213319DOI Listing

Publication Analysis

Top Keywords

tannic acid
8
collagen type
8
stem cells
8
cellular adhesion
4
adhesion chondrogenic
4
chondrogenic differentiation
4
differentiation inside
4
inside alginate-based
4
alginate-based bioink
4
bioink response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!