Recently, roadway releases of ,'-substituted -phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c07014 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 999077, Hong Kong SAR.
p-Phenylenediamine (PPD) antioxidants and their quinone derivatives (PPDQs), as hot-spot novel contaminants in recent years, have been detected in air fine particulate matters (PM) in multiple regions. However, current research all discussed the pollution of PPDs and PPDQs based on the collected PM samples at least in one day (23.5 h).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.
Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Additives leached from tire particles (TPs) after entering the marine environment inevitably interact with marine life. Marine heatwaves (MHWs) would play a more destructive role than ocean warming during the interaction of pollutants and marine life. To evaluate the potential risks of TPs leachate under MHWs, the physiological and nutrient metabolic endpoints of microalgae were observed for 7 days while being exposed to TPs leachate at current or predicted concentrations under MHWs.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
While -phenylenediamine antioxidants (PPDs) pose potential risks to aquatic ecosystems, their environmental persistence and transformation remain ambiguous due to the undefined nature of PPD C-N bond hydrolysis. Here, we investigated the hydrolysis patterns of PPDs by analyzing their hydrolysis half-lives, hydrolysis products around neutral pH (pH 6.0-7.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea.
In the current study, we aimed to evaluate the combined antimelanogenic effects of resveratrol- and protopanaxadiol (PPD)-enriched rice seed extracts (DJ526 and DJ-PPD) in melan-a cells. The treatment antioxidant capacity was evaluated using the ABTS radical scavenging method. TR_3 (70% [wight ()/] of DJ526 and 30% [/] of DJ-PPD) markedly increased the antioxidant activity at a level similar to that of DJ526 and DJ-PPD alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!