Electrocatalytic nitrate to ammonia conversion is a key reaction for energy and environmental sustainability. This reaction involves complex multi electron and proton transfer steps, and is impeded by the lack of catalyst for promoting both reactivity and ammonia selectivity. Here, we demonstrate active motifs based on the Chevrel phase CoMoS exhibit an enzyme-like high turnover frequency of ∼95.1 s for nitrate electroreduction to ammonia. We reveal strong synergy of multiple binding sites on this catalyst, such that the ligand effect of Co steers H* toward hydrogenation other than hydrogen evolution, the ensemble effect of Co, and the spatial confinement effect that promote the full hydrogenation of NO to ammonia without N-N coupling. The catalyst exhibits almost exclusive ammonia conversion with a Faradaic efficiency of 97.1% and ammonia yielding rate of 115.5 mmol·g·h in neutral electrolytes. The high activity was also confirmed in electrolytes with dilute nitrate and high chloride concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c04828DOI Listing

Publication Analysis

Top Keywords

ammonia conversion
8
ammonia
7
comos catalyzes
4
catalyzes exclusive
4
exclusive electrochemical
4
nitrate
4
electrochemical nitrate
4
nitrate conversion
4
conversion ammonia
4
ammonia enzyme-like
4

Similar Publications

Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

The complete conversion of dinitrogen to ammonia mediated by a side-on N-bound carbene-beryllium complex, [NHC-Be(η-N)] has been studied considering both the symmetric and unsymmetric pathways. -heterocyclic carbenes complexed with Be(η-N) moieties were considered substrates in our study. We found that two mechanistic pathways were possible for the reduction of dinitrogen to form ammonia.

View Article and Find Full Text PDF

The adenosylcobalamin (AdoCbl)-dependent enzyme ethanolamine ammonia-lyase (EAL) catalyzes the conversion of ethanolamine to acetaldehyde and ammonia. As is the case for all AdoCbl-dependent isomerases, the catalytic cycle of EAL is initiated by homolytic cleavage of the cofactor's Co-C bond, producing Cocobalamin (CoCbl) and an adenosyl radical that serves to abstract a hydrogen atom from the substrate. Remarkably, in the presence of substrate, the rate of Co-C bond homolysis of enzyme-bound AdoCbl is increased by 12 orders of magnitude.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!