Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more relevant and consistent responses. Using this knowledge-graph we do not need the entire utterance history, rather only the last utterance to capture the conversational context. We conduct experiments showing the effectiveness of the knowledge-graph in capturing the context and generating good response. We compare these results against hierarchical-encoder-decoder models and show that the use of triples from the conversational knowledge-graph is an effective method to capture context and the user requirement. Using this knowledge-graph we show an average performance gain of 0.75 BLEU score across different models. Similar results also hold true across different manual evaluation metrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910720 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269856 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!