Unlabelled: Pancreatic ductal adenocarcinoma (PDAC) is one of the most life-threatening malignancies. Although the deoxycytidine analog gemcitabine has been used as the first-line treatment for PDAC, the primary clinical challenge arises because of an eventual acquisition of resistance. Therefore, it is crucial to elucidate the mechanisms underlying gemcitabine resistance to improve treatment efficacy. To investigate potential genes whose inactivation confers gemcitabine resistance, we performed CRISPR knockout (KO) library screening. We found that deoxycytidine kinase (DCK) deficiency is the primary mechanism of gemcitabine resistance, and the inactivation of CRYBA2, DMBX1, CROT, and CD36 slightly conferred gemcitabine resistance. In particular, gene expression analysis revealed that DCK KO cells displayed a significant enrichment of genes associated with MYC targets, folate/one-carbon metabolism and glutamine metabolism pathways. Evidently, chemically targeting each of these pathways significantly reduced the survival of DCK KO cells. Moreover, the pathways enriched in DCK KO cells represented a trend similar to those in PDAC cell lines and samples of patients with PDAC with low DCK expression. We further observed that short-term treatment of parental CFPAC-1 cells with gemcitabine induces the expression of several genes, which promote synthesis and transport of glutamine in a dose-dependent manner, which suggests glutamine availability as a potential mechanism of escaping drug toxicity in an initial response for survival. Thus, our findings provide insights into novel therapeutic approaches for gemcitabine-resistant PDAC and emphasize the involvement of glutamine metabolism in drug-tolerant persister cells.
Implications: Our study revealed the key pathways involved in gemcitabine resistance in PDAC, thus providing potential therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-22-0554 | DOI Listing |
Cancers (Basel)
January 2025
Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.
View Article and Find Full Text PDFJ Pers Med
January 2025
Department of Obstetrics and Gynecology, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timișoara, Romania.
: Platinum-resistant ovarian cancer (PROC) is a major therapeutic challenge, as it responds poorly to standard platinum-based treatment, has limited treatment options, and offers a generally unfavorable prognosis. Chemotherapeutic agents like pegylated liposomal doxorubicin (PLD), topotecan (TOPO), and gemcitabine (GEM) are used for this setting, but with varying efficacy and toxicity profiles, leading to an increasing need to understand the optimal balance between treatment effectiveness and tolerability for improving patient outcomes. This study evaluates the efficacy and side effects of PLD, TOPO, and GEM, focusing on progression-free survival (PFS), overall survival (OS), and safety profiles.
View Article and Find Full Text PDFJ Pharm Pharmacol
January 2025
Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China.
Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest cancers globally. Despite gemcitabine being a primary chemotherapeutic agent, many patients with PDAC develop resistance, significantly limiting treatment efficacy. This study aims to screen and validate key genes associated with gemcitabine resistance in advanced PDAC using bioinformatics analysis and clinical sample validation, thereby providing potential noninvasive biomarkers and therapeutic targets for overcoming chemoresistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!