The stochastic wave function method for diffusion of alkali atoms on metallic surfaces.

Phys Chem Chem Phys

Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006, Madrid, Spain.

Published: February 2023

The stochastic wave function method is proposed to study the diffusion regimes of alkali atoms on metallic surfaces. The Lindblad approach, based on the microscopic Hamiltonian information in the Caldeira-Leggett model, is presented and numerical calculations of the dynamics are carried out to characterize surface diffusion for two different systems: Na-Cu(111) and Li-Cu(111). Calculations of the intermediate scattering function for an isolated adsorbate are compared, in the Brownian limit, with results deduced from helium spin-echo (HeSE) experiments after reducing them to single adsorbate dynamics. To illustrate the method we present the dependence on momentum transfer and the temperature dependency. Results show that the experiment can be described at a quantitative level by the 1-D quantum model (reduced dimensionality).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05511bDOI Listing

Publication Analysis

Top Keywords

stochastic wave
8
wave function
8
function method
8
alkali atoms
8
atoms metallic
8
metallic surfaces
8
method diffusion
4
diffusion alkali
4
surfaces stochastic
4
method proposed
4

Similar Publications

A brief introduction to the diffusion Monte Carlo method and the fixed-node approximation.

J Chem Phys

December 2024

Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy.

Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and postgraduate classes. This tutorial is a step toward filling this gap.

View Article and Find Full Text PDF

Predictive Complexity of Quantum Subsystems.

Entropy (Basel)

December 2024

Department of Physics, University of Maryland, College Park, MD 20742-4111, USA.

We define predictive states and predictive complexity for quantum systems composed of distinct subsystems. This complexity is a generalization of entanglement entropy. It is inspired by the statistical or forecasting complexity of predictive state analysis of stochastic and complex systems theory but is intrinsically quantum.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

In this paper, the unified approach is used in acquiring some new results to the coupled Maccari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a restricted region. We provide new results with complicated structures to this model, including hyperbolic, trigonometric and rational function solutions.

View Article and Find Full Text PDF

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!