Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The genetic consequences of the subdivision of populations are regarded as significant to long-term evolution, and research has shown that the scale and speed at which this is now occurring is critically reducing the adaptive potential of most species which inhabit human-impacted landscapes. Here, we provide a rare and, to our knowledge, the first analysis of this process while it is happening and demonstrate a method of evaluating the effect of mitigation measures such as fauna crossings. We did this by using an extensive genetic data set collected from a koala population which was intensely monitored during the construction of linear transport infrastructure which resulted in the subdivision of their population. First, we found that both allelic richness and effective population size decreased through the process of population subdivision. Second, we predicted the extent to which genetic drift could impact genetic diversity over time and showed that after only 10 generations the resulting two subdivided populations could experience between 12% and 69% loss in genetic diversity. Lastly, using forward simulations we estimated that a minimum of eight koalas would need to disperse from each side of the subdivision per generation to maintain genetic connectivity close to zero but that 16 koalas would ensure that both genetic connectivity and diversity remained unchanged. These results have important consequences for the genetic management of species in human-impacted landscapes by showing which genetic metrics are best to identify immediate loss in genetic diversity and how to evaluate the effectiveness of any mitigation measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.16877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!