A fabric liner is an ideal self-lubricating material that has been widely used in self-lubricating spherical plain bearings. To investigate the influence of sliding orientation on the tribological properties of fabric liners, samples were prepared for different fiber orientations relative to the sliding direction and wear tests were conducted under normal loads of 25 N to 200 N. Composite-90° (sliding along Kevlar fibers) shows the best friction and wear properties under loads of 50 N and 100 N, while composite-0° (sliding along PTFE fibers) exhibits the best tribological properties when the load increases to 200 N. Due to the formation of a PTFE transfer film, the friction coefficient even decreases during the stable wear stage. Although the dry sliding condition is controlled by a transfer film formed on the friction interface, the contact geometry generated by the interlacing fibers as well as sliding direction continue to dominate the tribological properties under a light load. The combination of a suitable heavy load and sliding along the PTFE fiber is conducive to the formation of a stable and continuous transfer film of debris. Accordingly, the lowest friction coefficient of 0.105 and the lowest wear depth of 0.056 mm are achieved for composite-0° under 200 N.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891079 | PMC |
http://dx.doi.org/10.1039/d2ra07275k | DOI Listing |
Materials (Basel)
December 2024
Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
The aim of the work is to design and validate a characterization protocol for glazes used in the ceramic tile industry to lead manufacturers and researchers towards the formulation of glazes with enhanced wear resistance properties. The focus of the protocol is addressed to determine surface parameters that strongly depend on glaze formulation and firing temperature. This protocol includes analytical (e.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.
This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Manufacturing Engineering, Technical University from Cluj-Napoca, 400001 Cluj-Napoca, Romania.
The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China.
The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
Corn stalk fibers extracted from cattle manure (CSFCM) represent a unique class of natural fibers that undergo biological pre-treatment during ruminant digestion. This study systematically investigates the optimization of CSFCM-reinforced friction materials through controlled silane treatment (2-10 wt.%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!