A Schiff base ligand HL, ()-2-((adamantan-1-ylimino)methyl)-6-allylphenol, was synthesized by condensation of amantadine with 3-allyl-2-hydroxybenzaldehyde, followed by the synthesis of its Zn(ii), Co(ii), Cr(iii), and VO(iv) complexes under reflux conditions. The synthesized compounds were comprehensively elucidated by using different spectroscopic and analytical techniques: UV-Vis, H and C-NMR, FT-IR, ESI-MS, thermal, and single-crystal XRD analysis. The chemical composition of the synthesized compounds was also verified by molar conductance and elemental analysis. An octahedral geometry for Cr(iii) and Co(ii) complexes, tetrahedral for Zn(ii) complex, and square pyramidal geometry have been proposed for VO(iv) complexes. The antidiabetic activities of the synthesized compounds were also evaluated by performing α-amylase and α-glucosidase inhibition studies. The Co(ii) complex exhibited the highest α-glucosidase inhibitory activity, whereas oxovanadium(iv) and zinc(ii) complexes were also found to be effective against α-amylase. In alkaline phosphatase (ALP) inhibition studies, the HL was found to be inactive, while the complexes showed remarkable enzyme inhibition in the following order: VO > Zn > Co, in a concentration-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846949 | PMC |
http://dx.doi.org/10.1039/d2ra07051k | DOI Listing |
ChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFFoods
January 2025
School of Biotechnology, Jiangnan University, Wuxi 214000, China.
The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia.
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane has been identified as a lead, with MICs of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!