Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin-sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S-C bonds at olefinic sites, whereas the reaction at 230 °C would produce C-S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855616 | PMC |
http://dx.doi.org/10.1039/d2ra07082k | DOI Listing |
Microsc Res Tech
December 2024
Department of Botany, Root and Soil Biology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India.
Cordia diffusa K.C. Jacob, known as Sirunaruvili, belonging to the family Boraginaceae, is a rare endemic species.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of International Development, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK.
The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:
Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
A bioinspired method for surface modification of nanocellulose has been proposed, drawing inspiration from the lignification process in plant cell walls. Unlike traditional methods for synthesizing dehydrogenation polymers (DHPs) of lignin, this study innovatively prepared a water-soluble DHPs precursor, coniferin, which underwent homogeneous polymerization catalyzed by peroxidase to generate DHPs that adhered to the surface of nanocellulose. Modified nanocellulose was then filtered into membranes, and the presence of DHPs increased the water contact angle, achieving high hydrophobicity with little DHPs content.
View Article and Find Full Text PDFFront Microbiol
December 2024
School of Biological Science and Technology, University of Jinan, Jinan, China.
Paper mulberry () is a high-quality silage protein feed material that can help address feed shortages and support livestock development. Although some studies have investigated the relationships between microbial communities and silage quality, these relationships and the underlying community assembly processes remain complex, requiring further research to clarify them. Additionally, limited research has explored the relationship between microbial community fermentation functions and silage quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!