A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiology blues: Comparing occupational blue-light exposure to recommended safety standards. | LitMetric

Radiology blues: Comparing occupational blue-light exposure to recommended safety standards.

SA J Radiol

Department of Physics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.

Published: January 2023

Background: The blue-light hazard is a well-documented entity addressing the detrimental health effects of high-energy visible light photons in the range of 305 nm - 450 nm. Radiologists spend long hours in front of multiple light-emitting diode (LED)-based diagnostic monitors emitting blue light, predisposing them to potentially higher blue-light dosages than other health professionals.

Objectives: The authors aimed to quantify the blue light that radiology registrars are exposed to in daily viewing of diagnostic monitors and compared this with international occupational safety standards.

Method: A limited cross-sectional observational study was conducted. Four radiology registrars at two academic hospitals in Bloemfontein from 01 October 2021 to 30 November 2021 participated. Diagnostic monitor viewing times on a standard workday were determined. Different image modalities obtained from 01 June 2019 to 30 November 2019 were assessed, and blue-light radiance was determined using a spectroscope and image analysis software. Blue-light radiance values were compared with international safety standards.

Results: Radiology registrars spent on average 380 min in front of a diagnostic display unit daily. Blue-light radiance from diagnostic monitors was elevated in higher-intensity images such as chest radiographs and lower for darker images like MRI brain studies. The total blue-light radiance from diagnostic display units was more than 10 000 times below the recommended threshold value for blue-light exposure.

Conclusion: Blue-light radiance from diagnostic displays measured well below the recommended values for occupational safety. Hence, blue-light exposure from diagnostic monitors does not significantly add to the occupational health burden of radiologists.

Contribution: Despite spending long hours in front of diagnostic monitors, radiologists' exposure to effective blue-light radiance from monitors was far below hazardous values. This suggests that blue-light exposure from diagnostic monitors does not increase the occupational health burden of radiologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900293PMC
http://dx.doi.org/10.4102/sajr.v27i1.2522DOI Listing

Publication Analysis

Top Keywords

diagnostic monitors
24
blue-light radiance
24
blue-light
12
blue-light exposure
12
radiology registrars
12
radiance diagnostic
12
diagnostic
10
long hours
8
hours front
8
blue light
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!