Halide recognition by supramolecular receptors and coordination complexes in water is a long-standing challenge. In this work, we report chloride binding in water and in competing media by pre-organised binuclear kinetically inert lanthanide complexes, bridged by flexible -(CH)- and -(CH)- spacers, forming [Ln(DO3A)C-2] and [Ln(DO3A)C-3], respectively. These hydrophilic, neutral lanthanide coordination complexes are shown to bind chloride with apparent association constants of up to 10 M in water and in buffered systems. Hydroxide bridging was observed in these complexes at basic pH, which was proven to be overcome by chloride. Thus, these lanthanide complexes show promise towards chloride recognition in biology and beyond. The results described here have clearly identified a new area of anion coordination chemistry that is ripe for detailed exploration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891377 | PMC |
http://dx.doi.org/10.1039/d2sc05417e | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:
The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, California State University at Long Beach, 1250 N. Bellflower Blvd., Long Beach, CA, 90840, USA.
Temperature-dependent rate constants for the reaction of the -dodecane radical cation (RH˙) with trivalent lanthanide ion-complexed ,,','-tetraoctyl diglycolamide (TODGA) over the range 10-40 °C have been determined using electron pulse radiolysis/transient absorption spectroscopy techniques. For the free ligand, an activation energy of = 20.4 ± 0.
View Article and Find Full Text PDFIsostructural Dy(III) and Er(III) complexes [L12Ln(H2O)5][I]3·L12·(CH2Cl2) (Ln = Dy (1), Er (3)) and [L22Ln(H2O)5][I]3·L22·(CH2Cl2)2 (Ln = Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D5h) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHiPr)2 (L1) and carbazolyl phosphoramide (Cz)P(O)(NHiPr)2 (L2). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (Ueff) of 640 K and 560 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D5h symmetry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!