The synthesis of bulk nanoporous copper (npCu) from a copper-manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by resistometry. In comparison to the well-established nanoporous gold (npAu) system, npCu shows strongly suppressed reordering processes in the porous structure (behind the etch front), which can be attributed to pronounced manganese oxide formation. Characteristic variations with the electrolyte concentration and potential applied for dealloying could be observed. Cyclic voltammetry was used to clarify the electrochemical behaviour of npCu. Oxide formation is further investigated by SEM and EDX revealing a hybrid composite of copper and manganese oxide on the surface of a metallic copper skeleton. Platelet-like structures embedded in the porous structure are identified which are rich in manganese oxide after prolonged dealloying. As an outlook, this unique heterogeneous structure with a large surface area and the inherent properties of manganese and copper oxides may offer application potential for the development of electrodes for energy storage and catalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846480PMC
http://dx.doi.org/10.1039/d2na00618aDOI Listing

Publication Analysis

Top Keywords

oxide formation
12
manganese oxide
12
bulk nanoporous
8
nanoporous copper
8
copper-manganese alloy
8
electrochemical behaviour
8
porous structure
8
oxide
5
copper
5
porosity evolution
4

Similar Publications

Mitochondria from harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed.

View Article and Find Full Text PDF

Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.

Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Objective: Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis.

Methods: Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis.

View Article and Find Full Text PDF

Evaluation the protective role of baicalin against HO-driven oxidation, inflammation and apoptosis in bovine mammary epithelial cells.

Front Vet Sci

December 2024

Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.

Mastitis is one of the most common diseases in dairy farms. During the perinatal period, the bovine mammary epithelial cells (BMECs) of High-yielding dairy cows accelerate metabolism and produce large amounts of reactive oxygen species (ROS). It is one of the primary causes of mastitis and will lead to the breakdown of redox balance, which will induce oxidative stress, inflammation, and apoptosis.

View Article and Find Full Text PDF

Effects of endophytes on early growth and ascorbate metabolism in .

Front Plant Sci

December 2024

Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States.

Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of with three different endophytes. The three endophytes used were pb1(Bapb1), (Ml) and SLB4 (SLB4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!