Background: The aim of this study was to evaluate the color stability and the surface roughness of a bulk-fill composite flow (SDR® Plus) by comparison to an ORMOCER-based composite (Ceram.x® Universal SphereTEC™) in order to confirm the validity of using SDR® Plus in the anterior region and to allow the prediction of its long-term results.

Material And Methods: 35 composite specimens of the same shade (A2), thickness (2mm) and shape of both types of composite were prepared. The specimens were cured and polished according to the manufacturer's instructions. The initial shade of the specimens was measured using a calibrated EasyShade spectrophotometer. The initial surface roughness of the specimens was measured by AFM. Afterwards, the specimens were subjected to an accelerated aging procedure through thermo-cycling, a coffee stain challenge and brushing to simulate two years in the oral environment. The shade and surface roughness of the specimens were measured again after the accelerated aging procedure.

Results: The mean ΔE was significantly larger than 3.368 in Ceram.x® group (--value<0.001) and SDR® Plus group (--value<0.001). The mean surface roughness has significantly increased for both groups after aging with no significant difference between the two groups. It however remained clinically acceptable.

Conclusions: SDR® Plus and Ceram.x® showed similar surface roughness when subjected to the same testing conditions. Concerning the color stability, both composites displayed noticeable discoloration, with higher ΔE values registered for Ceram.x®. Composite resins, spectrophotometry, atomic force microscopy, dental material, resin-based material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899357PMC
http://dx.doi.org/10.4317/jced.60005DOI Listing

Publication Analysis

Top Keywords

surface roughness
16
specimens measured
12
color stability
8
stability surface
8
composite flow
8
roughness specimens
8
accelerated aging
8
specimens
6
composite
5
vitro evaluation
4

Similar Publications

Fabrication of photo-responsive self-deicing surface with micro-nano rough structures on fabrics.

J Colloid Interface Sci

December 2024

Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, PR China.

Photothermal superhydrophobic treatment is an effective anti-icing and de-icing method, avoiding damage to equipment caused by ice accumulation in winter. However, the traditional photothermal materials were expensive and the photothermal conversion coatings are hard to remove when unnecessary. Herein, three biochar microspheres with solid, hollow, and flower-like structures (SBMs, HBMs, FBMs) were fabricated to construct photothermal superhydrophobic coatings on the polyester fabric (PET), respectively.

View Article and Find Full Text PDF

Objective:  Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.

View Article and Find Full Text PDF

Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!