A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S100A9 promotes glycolytic activity in HER2-positive breast cancer to induce immunosuppression in the tumour microenvironment. | LitMetric

S100A9 promotes glycolytic activity in HER2-positive breast cancer to induce immunosuppression in the tumour microenvironment.

Heliyon

Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Multidisciplinary Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.

Published: February 2023

Purpose: The purpose of this study was to investigate the correlation between S100 calcium binding protein A9 (S100A9), tumour glycolysis and tumour infiltrating lymphocytes (TIL) in human epidermal growth factor receptor 2 (HER2) - positive breast cancer (BRCA).

Materials And Methods: A total of 667 BRCA patients in Xiangya Hospital of Central South University were enrolled in this study. Haematoxylin and eosin (H&E) staining were used to count TIN in tissues. Human breast cancer cell lines (SK-BR-3 cells and BT474 cells) were transfected with S100A9 specific small interfering RNA (siRNA). The expressions of S100A9, glycolytic enzymes and lymphocyte markers were detected by immunohistochemistry (IHC) staining, Western blot and immunofluorescence. Lactate production, glucose consumption and the extracellular acidification rate (ECAR) were detected to assess glycolysis activity.

Results: S100A9 was significantly overexpressed in HER2+ cases. The expressions of phosphoglycerol kinase 1 (PGK1), lactate dehydrogenase A (LDHA) and enolase α (ENO1) were significantly up-regulated in S100A9 dominant tissues. The expressions of PGK1, LDHA and ENO1 detected in S100A9 silenced cell lines were significantly down-regulated. Moreover, S100A9 silencing significantly altered lactate production, glucose uptake and ECAR levels in HER2+ cell lines. Co-expression of S100A9 and c-Myc was detected in HER2+ tissues. The absence of S100A9 greatly hindered β-catenin expression in cell lines, which later induced the phosphorylation of c-Myc.The amount of TILs in cases with abundant S100A9 and LDHA was much greater than in cases with low S100A9 levels and poorer LDHA. TIL deficiency and elevated S100A9 intensity are factors affecting the survival rate of HER2+ BRCA cases.

Conclusions: S100A9 overexpression upregulated the glycolysis activity of tumour cells through the c-Myc-related pathway, suppressing lymphocyte infiltration in the tumour stroma, affecting the efficacy of immune regulation and long-term survival of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900376PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e13294DOI Listing

Publication Analysis

Top Keywords

cell lines
16
s100a9
14
breast cancer
12
lactate production
8
production glucose
8
tumour
5
s100a9 promotes
4
promotes glycolytic
4
glycolytic activity
4
activity her2-positive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!