Background: Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A.
Results: The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation.
Conclusion: As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909926 | PMC |
http://dx.doi.org/10.1186/s12915-023-01521-5 | DOI Listing |
J Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFBlood Adv
January 2025
Vanderbilt University Medical Center, Nashville, Tennessee, United States.
In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Psychology, Lakehead University, Thunder Bay, ON, Canada.
Background: Transitional-aged youth have a high burden of mental health difficulties in Canada, with Indigenous youth, in particular, experiencing additional circumstances that challenge their well-being. Mobile health (mHealth) approaches hold promise for supporting individuals in areas with less access to services such as Northern Ontario.
Objective: The primary objective of this study is to evaluate the effectiveness of the JoyPop app in increasing emotion regulation skills for Indigenous transitional-aged youth (aged 18-25 years) on a waitlist for mental health services when compared with usual practice (UP).
JMIR Form Res
January 2025
Private Practice, Ballito, South Africa.
Background: Barriers to mental health assessment and intervention have been well documented within South Africa, in both urban and rural settings. Internationally, evidence has emerged for the effectiveness of technology and, specifically, app-based mental health tools and interventions to help overcome some of these barriers. However, research on digital interventions specific to the South African context and mental health is limited.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
Women's Health Research Institute, Vancouver, BC, Canada.
Background: Digital health innovations provide an opportunity to improve access to care, information, and quality of care during the perinatal period, a critical period of health for mothers and infants. However, research to develop perinatal digital health solutions needs to be informed by actual patient and health system needs in order to optimize implementation, adoption, and sustainability.
Objective: Our aim was to co-design a research agenda with defined research priorities that reflected health system realities and patient needs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!