Photoelectrochemical (PEC) water splitting to produce hydrogen fuel was first reported 50 years ago, yet artificial photosynthesis has not become a widespread technology. Although planar Si solar cells have become a ubiquitous electrical energy source economically competitive with fossil fuels, analogous PEC devices have not been realized, and standard Si p-type/n-type (p-n) junctions cannot be used for water splitting because the bandgap precludes the generation of the needed photovoltage. An alternative paradigm, the particle suspension reactor (PSR), forgoes the rigid design in favour of individual PEC particles suspended in solution, a potentially low-cost option compared with planar systems. Here we report Si-based PSRs by synthesizing high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to catalytically split water. By encoding a p-type-intrinsic-n-type (p-i-n) superlattice within single SiNWs, tunable photovoltages exceeding 10 V were observed under 1 sun illumination. Spatioselective photoelectrodeposition of oxygen and hydrogen evolution co-catalysts enabled water splitting at infrared wavelengths up to approximately 1,050 nm, with the efficiency and spectral dependence of hydrogen generation dictated by the photonic characteristics of the sub-wavelength-diameter SiNWs. Although initial energy conversion efficiencies are low, multijunction SiNWs bring the photonic advantages of a tunable, mesoscale geometry and the material advantages of Si-including the small bandgap and economies of scale-to the PSR design, providing a new approach for water-splitting reactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05549-5 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.
View Article and Find Full Text PDFNat Commun
January 2025
iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China.
The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical and Petroleum Engineering, University of Calgary Calgary Alberta Canada. Electronic address:
Hypothesis: Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.
Experiments: In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil.
Chem Asian J
January 2025
Birla Institute of Technology and Science, Vidya Vihar, 333031, Pilani, INDIA.
Development of a competent and stable electrocatalyst coupled with photovoltaic system for the generation of green hydrogen, can be a plausible answer to the existing energy crisis. Herein, we have developed Ru doped Ni0.95Se via hydrothermal method as a bifunctional catalyst for overall water splitting coupled with photovoltaic system.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!