We have developed a simple method to fabricate multi-walled carbon nanotube (MWNT) wiring on a plastic film at room temperature under atmosphere pressure. By irradiating a MWNT thin film coated on a polypropylene (PP) film with a laser, a conductive wiring made of a composite of MWNT and PP can be directly fabricated on the PP film. The resistance of MWNT wiring fabricated using this method were ranging from 0.789 to 114 kΩ/cm. By changing the scanning speed of laser, we could fabricate various regions with different resistances per unit length even within a single wiring. The formation mechanism of the MWNT wiring with tunable resistance was discussed from both experimental results, such as microscopic structural observation using cross-sectional scanning electron microscopy and microscopic Raman imaging, and simulation results, such as heat conduction in the film during local laser heating. The results suggest that the MWNT wiring was formed by PP diffusion in MWNT at high temperature. We also demonstrated that excess MWNTs that were not used for wiring could be recovered and used to fabricate new wirings. This method could be utilized to realize all-carbon devices such as light-weight flexible sensors, energy conversion devices, and energy storage devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908902 | PMC |
http://dx.doi.org/10.1038/s41598-023-29578-w | DOI Listing |
Sci Rep
February 2023
Department of Applied Electronics, Graduate School of Advanced Engineering, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.
We have developed a simple method to fabricate multi-walled carbon nanotube (MWNT) wiring on a plastic film at room temperature under atmosphere pressure. By irradiating a MWNT thin film coated on a polypropylene (PP) film with a laser, a conductive wiring made of a composite of MWNT and PP can be directly fabricated on the PP film. The resistance of MWNT wiring fabricated using this method were ranging from 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2011
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
A monotonic decrease in viscosity with increasing shear stress is a known rheological response to shear flow in complex fluids in general and for flocculated suspensions in particular. Here we demonstrate a discontinuous shear-thickening transition on varying shear stress where the viscosity jumps sharply by four to six orders of magnitude in flocculated suspensions of multiwalled carbon nanotubes (MWNT) at very low weight fractions (approximately 0.5%).
View Article and Find Full Text PDFBiosens Bioelectron
March 2009
Department of Chemistry Graduate School, Kyungpook National University, Daegu 702-701, South Korea.
A novel amperometric biosensor was fabricated based on the immobilization of cholesterol oxidase (ChOx) into a cross-linked matrix of chitosan (Chi)-room-temperature ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate). Initially, the surface of bare electrode (indium tin oxide coated glass) was modified with the electrodeposition of Au particles onto thiol (-SH) functionalized multi-walled carbon nanotubes (MWNTs). The biosensor electrode is designated as MWNT(SH)-Au/Chi-IL/ChOx.
View Article and Find Full Text PDFPhys Rev Lett
April 2001
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
We investigate the limits of high energy transport in multiwalled carbon nanotubes (MWNTs). In contrast to metal wires, MWNTs do not fail in the continuous, accelerating manner typical of electromigration. Instead, they fail via a series of sharp, equally sized current steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!