The spin physics of perovskite nanocrystals with confined electrons or holes is attracting increasing attention, both for fundamental studies and spintronic applications. Here, stable [Formula: see text] lead halide perovskite nanocrystals embedded in a fluorophosphate glass matrix are studied by time-resolved optical spectroscopy to unravel the coherent spin dynamics of holes and their interaction with nuclear spins of the Pb isotope. We demonstrate the spin mode locking effect provided by the synchronization of the Larmor precession of single hole spins in each nanocrystal in the ensemble that are excited periodically by a laser in an external magnetic field. The mode locking is enhanced by nuclei-induced frequency focusing. An ensemble spin dephasing time [Formula: see text] of a nanosecond and a single hole spin coherence time of T = 13 ns are measured. The developed theoretical model accounting for the mode locking and nuclear focusing for randomly oriented nanocrystals with perovskite band structure describes the experimental data very well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908866 | PMC |
http://dx.doi.org/10.1038/s41467-023-36165-0 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Russell Centre for Advanced Lightwave Science, Shanghai Institute of Optics and Fine Mechanics and Hangzhou Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
Continuous-wave mode-locking at multi-GHz repetition rates is achieved in an ultrashort laser cavity at critical pulse energies 100 times lower than predicted by conventional theory. The authors reveal that dynamic gain depletion and recovery between consecutive round-trips is the key factor behind a low-pulse-energy transition from Q-switched mode-locking (QSML) to continuous-wave mode-locking (CWML). As well as providing new insight into gain dynamics, the results suggest a practical route to low-threshold lasing at very high-repetition rates.
View Article and Find Full Text PDFCureus
November 2024
Trauma and Orthopedics, University Hospitals Birmingham NHS Foundation Trust, Birmingham, GBR.
Introduction: Clavicle fractures are routinely encountered in orthopedic clinical practice and have often been the subject of debate when it comes to optimal treatment. Clavicle fracture surgery has come a long way with excellent pre-contoured superior locking plates available for fixation. This study aimed to evaluate a cohort of patients operated for displaced mid-shaft clavicle fractures by open reduction and internal fixation using superior clavicle locking plates.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF).
View Article and Find Full Text PDFNanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!